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1 Abstract

In this paper we explain how an agent based approach can solve some of our crucial problemsin the two main
fields of research we are working in. The first one (where we started to use an agent based philosophy one
year ago) is mobile robotics, and the second one, shortly described here, is a simulator allowing surgeons to
train laparoscopic interventions. In mobile robotics applications, an agent based method allowed us to reach
two goals : allowing several users (through high level multimodal interfaces) to control and monitor distant
robots, the second one was to make robots communicate each other in order to perform cooperative tasks.
In our second field of work, agent based applications, allow surgeons to share environments (tele teaching)
through multimodal interfaces. Our agent based activities are developed by using and developing new tools
over the Open Agent Architecture (TM) (designed at SRI International / AIC, Menlo Park, California.

2 Mobile robotics activities

The goal of our group is to provide users of mobile robots with high level interfaces, allowing them (assuming
that they do not know anything about mobile robots) to control several robots in a natural way. To describe
our tools, we will use as frame work the system developed to compete in the AAAI robot contest[7] which
took place last summer in Portland (Oregon). Thanks to an agent architecture, we allowed three robots to
cooperate each other, under the supervision of a user (using a multimodal interface). This flexible approach
turned out to be very robust and efficient : we won the competition.

2.1 The framework

As introduced, we present our system by showing what we have developed for the AAAI 96 mobile robots
contest. Here are a few words about the event we competed in. In the "hold a meeting” event, a robot
starts from the Director’s office, determines which of two conference rooms is empty, notifies two professors
where and when the meeting will be held, and then returns to tell the Director. Points are awarded for
accomplishing the different parts of the task, for communicating effectively about its goals, and for finishing
the task quickly. Our strategy was simple: use as many robots as we could to cut down on the time to find
the rooms and notify the professors. We decided that three robots was an optimal choice: enough to search
for the rooms efficiently, but not too many to get in each other’s way or strain our resources. We would have
two robots searching for the rooms and professors, and one remaining behind in the Director’s office and tell
her when the meeting would be. We were concerned that leaving one robot behind as a mobile telephone was
stretching things a bit, so we cleared our strategy with the judges well before the contest.

2.2 The open agent architecture

When planning our strategy for how to approach this year’s robot contest, we decided to take advantage of
our recent integration of Saphira [1] as an agent within the Open Agent Architecture (OAA)[2]. The OAA is
a framework for constructing multi agent systems that has been used by SRI and clients to construct more



than fifteen applications in various domains [3]. Applying the OA A to the Office Navigation task in the robot
competition could provide the following advantages:

e Distributed
Agents can run on different platforms and operating systems, and can cooperate in parallel to achieve a
task. Some agents could be placed locally on each robot’s laptop controller, while other services could
be stored on a more powerful workstation.

e Plug and play
Agent communities can be formed by dynamically adding new agents at runtime. It is as easy to have
multiple robots executing tasks as it is to have just one.

o Agent Services
Many services and technologies encapsulated by preexisting agents can easily be added as resources
provided by our agent community. Useful agents for the robot domain would include database agents,
mapping agents, agents for text-to-speech, speech recognition, natural language, all which are directly
reusable from other agent-based applications.

e Multimodal
The agent architecture has been designed with the human user in mind [2][3]. Agents have been
developed to allow people to naturally combine, drawing, speaking, writing with more standard graphical
user interface approaches when addressing the set of distributed agents. In a robot domain, we can
monitor progress of robots on a map, and if required, give them instructions by speaking ” You are here
facing this direction” (while drawing an arrow), or ” Pick up this object” while indicating a target using
circles, pointing or arrow gestures.

e Mobile
The agent libraries are lightweight enough to allow multiple agents to run on small, wireless PDAs or
laptops, and communication among agents is fast enough to provide real time response for the robot
domain.

The OAA uses a distributed architecture in which a Facilitator agent is responsible for scheduling and
maintaining the flow of communication among a number of client agents. Agents interact with each other
through an Inter agent Communication Language (ICL), a logic-based declarative language based on an
extension of Prolog. The primary job of the Facilitator is to decompose ICL expressions and route them to
agents who have indicated a capability of resolving them. As communication occurs in an undirected fashion,
with agents specifying what information they need, not how this information is to be obtained, agents can be
replaced or added in a ” plug-and-play” fashion. Each agent in the OA A consists of a wrapper encapsulating a
knowledge layer written in Prolog, C, Lisp, Java, Visual Basic or Borland’s Delphi. The knowledge layer, in
turn, may lie on top of existing stand alone applications, and serves to map the functionality of the underlying
application into the ICL. In the case of the physical robots, we installed an agent interface on top of Saphira[l],
so that information about the robot’s location, and commands to navigate the robot, were made available to
all agents. The OAA agent library provides common functionality across all agents. Each agent can respond
to or produce requests for information or service, and can install triggers to monitor real-world conditions.
Triggers may make reference to temporal events, to changes in local or remote data values, to specific agent
communication messages or to domain-specific test conditions provided by some agent (e.g., a trigger request
”When mail arrives from Bob...” will automatically be installed by the Facilitator on the mail agent, who can
perform this verification).

2.3 Robots as physical agents

System design

The system we developed is made of a set of independent agents (including robots), able to communicate
in order to perform cooperative tasks. An operator can graphically monitor the whole scene and interactively
control the robots. A top level program, the strategy agent, was designed to synchronize and control the
robots and software agents.
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Figure 1: Organization of physical and software agents for the AAAT contest.

Figure 1 is a diagram of the complete system, including the physical location of all agents. The facilitator,
database agent, map manager agent, strategy agent and speech recognition agent were running on a UNIX
workstation (Sparc20). On the robots, each Saphira[l] agent was running (under Windows 95) on a laptop
computer, each equipped with sound devices and text-to-speech converters. The link between the robots and
the Sparc20 was through wireless Ethernet links. All agents start running and connect to the facilitator,
registering their capabilities so that other agents can send them requests. This is the essential part of the
agent architecture: that agents are able to access each others’ capabilities in a uniform manner. Many of
the interface agents already exist at SRI: the speech and pen gesture recognition agents, for example. To
access these capabilities for the robots, we have only to describe how the output of the interface functions
should invoke robot commands. In addition, since agents are able to communicate information by asking and
responding to queries, it is easy to set up software agents, like the mapping and strategy agents, to keep
track of and control multiple robots. We’ll briefly describe the capabilities of the agents.

Saphira

Saphira[l] is a powerful system able to make a robot independent by giving it high level behaviors (Obstacle
avoidance, map building, location to reach). This control program extracts pieces of information by reading
and interpreting sensors values; such as sonars readings, camera images or wheels positions. Tt uses its
knowledge (a priori known maps or spatial information) and compare it with the incoming information (from
sensors) in order to adapt the robot’s behavior. Therefore, distant agents can query Saphira to be get
information about a specific robot or to send it commands such as a sequence of goals to execute.

Robot Information and the Database Agent
Each robot agent provides information about the robot state, and accepts commands to control the robot.
The information includes.

e Position with respect to the robot’s internal coordinate system
e Robot movement status: stopped, moving forward, turning
e Currently executing behaviors on the robot

An interesting problem is how two agents maintain a consistent coordinate system. Commands that are robot-
relative, e.g., "move forward” | are interpreted with respect to the robot’s internal coordinate system. Other
commands, such as ”Go to office EK288,” must be interpreted with respect to a common global framework.
The Database Agent is responsible for maintaining a global map, and distributing this information to other



agents when appropriate. Each physical robot has its own copy of the global map, but these copies need not
be exactly alike. For example, an individual map may be missing information about an area the robot has
no need to visit. During movement, each robot keeps track of its global position through a combination of
dead-reckoning (how far its wheels have moved) and registration with respect to objects that it senses. It
communicates with the database agent to update its position about once a second, and to report any new
objects that it finds, so they can be incorporated into the global database and made available to other agents.
In this way, the database agent has available information about all of the robot agents that are currently
operating.

The Mapper Agent and Multimodal Input
If a robot becomes lost, it can query the facilitator to help re localize. Currently, this means human
intervention: the facilitator signals that a particular robot is lost, and asks for a new position for the robot.
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Figure 2: The mapping agent’s view of the database.

The state of each robot is displayed by the map manager agent, or mapper. All currently known objects in
the database, as well as the position of all robots, are constantly updated in a 2-dimensional window managed
by this agent. Figure 2 shows the mapper’s view of the database contents. Corridors, doors, junctions, and
rooms are objects known to the mapper. A robot’s position is marked as a circle with an arrow in it, showing
the robot’s orientation. To correct the position of a lost robot, the user can point to a position on the map
where the robot is currently located, or simply describe the robot’s position using speech input. This is one
of the most useful features of the OAA architecture, the integration of multimodal capabilities.

Currently, the system accepts either voice input or pen gestures. The interpretation of the gestures
depends on context. For instance, when the robot is lost, the user can tell it where it is by drawing a cross
(for the location) and an arrow (to tell the robot where it faces) on the map. Using 2D gestures in the human-
computer interaction holds promise for recreating the paper-pen situation where the user is able to quickly
express visual ideas while she or he is using another modality such as speech. However, to successfully attain
a high level of human-computer cooperation, the interpretation of on-line data must be accurate and fast
enough to give rapid and correct feedback to the user. The gesture recognition engine used in our application
is fully described in [4]. There is no constraint on the number of strokes. The latest evaluations gave better
than 96 accuracy, and 00the recognition was performed in less than half a second on a PC0 486/50, satisfying
what we judge is required in terms of quality and speed [6]. Given that our map manager program is an
agent, the speech recognition agent can also be used in the system. Therefore, the user can talk to the system
in order to control the robots or the display. For instance, it is possible to say : “Show me the director’s
room” to put the focus on this specific room, or “robot one, stop”, “robot one, start”, to control a given
robot. Using the global knowledge stored in the database, this application can also generate plans for the
robots to execute. The program can be asked (by either a user or a distant agent) to compute the shortest
path between two locations, to built the corresponding plan and send it to the robot agent. Plans are locally
executed through Saphira[l] in the robots themselves. Saphira returns a success or failure message when it
finishes executing the plan, so the database agent can keep track of the state of all robots. In the figure, the
plan is indicated by a line drawn from the robot to the goal point, marked by an ”X”.

The strategy agent

The strategy agent controls the coordinated movements of the robots, by keeping track of the total world
stated and deciding what tasks each robot should perform at any given moment. While it would be nice to
automatically derive multi agent strategies from a description of the task, environment, and robots, we have



not yet built an adequate theory for generating efficient plans. Instead, we built a strategy for the event by
hand, taking into account the various contingencies that could arise. The strategy was written as a set of
coupled finite-state machines,; one for each robot agent. Because the two Pioneer robots had similar tasks,
their F'S machines were equivalent. Figure 3 shows the strategies for these agents.Note that the FS strategies
are executed by the strategy agent not the robots. Each node in the FS graph represents a task that the
strategy agent dispatches to a robot, e.g., navigating to a particular location. The robot in the Director’s
room has a simple task: just wait until all the other robots have completed their task, then announce the time
and place of the meeting. Transitions between states are triggered by events that come into the database: a
robot successfully completing a task, or some condition becoming known, e.g., whether a conference room
1s empty or full. The dark arrows indicate successful completion of a task, while the dotted arrows indicate
failure.
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Figure 3: Finite state strategy machines.

Both traveling robots have the same strategy. After initialization, they go to a conference room (the
strategy agent makes sure they pick different rooms). At any point during navigation, if they get lost, they
signal the strategy agent that the navigation was unsuccessful, and the strategy agent asks the mapping agent
to return a new location for the robot. This happened several times during preliminary runs, when one of
the robots attempted to navigate through a conference room and got lost. We were able to tell the robot
where it was, and keep going from that point. Arriving at a conference room, the robot checks if the room
is empty. If so, it informs the database, continues on to the nearest professor’s room. If; while one robot 1s
navigating to its conference room, the strategy agent learns that the other robot has found an empty one, it
immediately starts the first robot navigating towards the professor’s office. Once at the professor’s office, the
robots announce the expected time of the meeting, based on estimates of how long it will take the last robot
to reach its professor’s office.

3 Virtual surgery activities

3.1 Introduction

The Institute of Micro-Engineering at EPFL (Swiss Federal Institute of Technology) is developing, in col-
laboration with industrial partners, a training system for laparoscopic surgery. In this kind of surgery, also
called minimally invasive therapy, surgeons insert a camera (endoscope) and tools inside the patient through
a set of small holes. Thus, when a surgeon performs, he looks at a display to the images provided by the
endoscope and does not stares at his hands anymore. This technique has a lot of advantages comparing
to classic surgery. The recovery time is significantly shortened, so the period the patient has to spend in
the hospital is reduced. Ugly scars can also be avoided and the trouble caused by the intervention is less
painful. The system we intend to develop provides the user with both real time visual and tactile feed back
information. This section explains how agents could help us to enhance our simulator in order to provide
surgeons with high level multimodal interfaces, using concepts tested within our mobile robotics activities.

3.2 The tools we developed

The heart of the system is a library called libptk. This set of functions allows a programmer to quickly and
easily create virtual reality based simulators. The main features of this library are :



e Ability to deal with three types of objects
What we call an object is a volume, rendered in a 3D scene. Libptk deals with three types of objects;.the
first one, solids, represent static volumes needed for the background of the scene. The second one,organs,
are more dynamic than solids, they can deformed in real time when they are touched by element of the
third type of objects, tool.

e Texturation facilities
Each object loaded in a scene can be textured. A texture is placed into the surface of an object through
a texture laboratory, allowing the user to choose how the texture will stick to the object. In addition to
that, textures can be classic 2D images or a real time video flow, coming from a video database. This
technique dramatically increases the level of realism of the scene, especially for dynamic effects such as
bleedings of smoke diffusion.

e 3D pointing devices
In a given scene, each object can be attached to a 3D pointing device (space mouse, 3D mouse, force
feedback system or a syntaxer)

e Ability to write a file to describe the scene
When the user is willing to create a scene, she only has to write a file which tells the simulator what
kind of solids have to be loaded and how they will behave with respect to the events.

3.3 Agent compatible

The interesting point here, is that the whole system is designed as an agent compatible with the OAA.
It means that every object in the scene (including the point of view) can be locally controlled to any 3D
pointing device described above, or remotely linked to a distant agent. This expands the possibilities of such
a simulator, the main advantages are :

e Sharing
Each object of a given scene can be shared among different users located in distant places. For instance,
during a training session a senior surgeon can reach the junior’s station to remotely monitor the scene
and tele control the student’s work in order to teach her the right gesture.

e Reuse
This feature allows us to re-use all existing agents such as the speech recognition agent, the database
agent, robots agents or mapper with our virtual reality based system. For instance, the speech recog-
nition system is seen by the simulator like a 3D pointing device. By saying commands like “move in”,
“move left” the user can choose the position any objects or the point of view in a given scene.

e Multimodality
By reusing existing techniques, we could make our surgery interface work as a multimodal interface.
The involved modalities are speech recognition and 3D pointing (mouse 3D, force feedback system)

4 Conclusion

4.1 Advantages

As introduced, this paper presents the advantages we obtained by using an agent architecture within our
two fields of research. In mobile robotics activities, we won the A A Al mobile robots competition by allowing
robots to behave as agents in order to cooperate. In our virtual surgery project, we developed a tool which
allows people to share worlds through high level interfaces. Here, high level interface means multimodal tools
(gesture and speech recognition) including real time 3D images and force feedback systems. For instance,
during a real operation, the main surgeon asks his co worker, who holds the endoscope, to move it in order
to focus in the right area. In our simulator, by linking the point of view to the speech recognition agent, we
could quite easily simulate this important feature. In addition to that, a senior surgeon can connect his or
her interface to a distant junior’s station, to directly monitor and interact with the student.



4.2 Synergies

Our two domains of research seem to be very different, but a lot of concepts developed in one can be (thanks
to the re usability feature offered by an agent based approach) directly integrated into the second one. For
instance, we are currently developing virtual reality based interfaces to control robots by using the tools
designed for our surgery simulator. So, users can use multimodal 2D and 3D interfaces to control shared
robots.
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