
Active : A uni�ed platform for building
intelligent assistant applications

Didier Guzzoni

October 25, 2007

Abstract

Computers have become a�ordable, small, omnipresent and are often connected
to the Internet. However, despite the availability of such rich environments,
user interfaces have not been adapted to fully leverage their potential. In our
view, user interfaces will evolve to become more than simple tools that act using
a click-and-act paradigm � people want software that can act as assistants to
whom tasks can be delegated. This new type of software will provide us with
more user-centric systems, able to interact naturally with human users and with
the information environment. Although progress has been made in this direc-
tion over the last decade, current research in the �eld has shown that building
intelligent assistants is a complex task that requires expertise in many �elds,
ranging from arti�cial intelligence to core software and hardware engineering.
The di�culty of deeply integrating of all the technologies and AI methodologies
required to produce robust, intelligent assistants has greatly limited the impact
and widespread adoption of this form of software.

In this thesis, we propose to design, implement and evaluate a new method-
ology and associated tool suite whose aim is to ease and accelerate the devel-
opment of intelligent assistant software. Active, our solution, introduces the
original concept of Active Ontologies, and combines it with a service oriented
architecture to serve as the foundation for user-centric applications. The Active
software suite features a programming editor, a runtime server and associated
management tools. Using this uni�ed platform, we developed techniques for
rapidly creating intelligent assistant applications that weave together language
processing, process modeling and dynamic service orchestration.

To validate our approach, three prototypes have been implemented and eval-
uated. First, we created an assistant that helps mobile users retrieve informa-
tion and access online services. The system allows users to retrieve information
through natural language dialog about restaurants, hotels, points of interest,
�ights status and weather forecasts. As a second prototype, we have imple-
mented an assistant to help surgeons in the context of the operating room. The
system uses a combination of voice and gesture recognition to help surgeons
navigate through pre-operative information, visualize and control a live video
stream coming from an endoscope mounted on a robotic arm. Lastly, we have
created a system that helps organize meetings through emails and instant mes-
sages with the organizer and attendees. These three prototypes are deployed in
very di�erent application domains, and yet are built with the same tools and
methods; this demonstrates the �exibility and versatility of our approach.

We conducted a user study to validate our claim that, in speci�c domains,
intelligent assistant software can perform better than conventional software ap-
proaches. First, we compared our mobile assistant against Google MobileTM,
the leading commercially available search application for mobile users. We asked
a population of users to accomplish ten travel-related tasks with both systems.
Results show that, for the travel domain, our assistant-based system performs
signi�cantly better both in terms of e�ectiveness and time to completion than
the more conventional, keyword-based search engine. In the medical domain, we
asked a small population of surgeons to accomplish a set of tasks with our sec-
ond prototype. After providing us with a positive feedback, surgeons used our

prototype to discuss and experiment with innovative forms of user interaction
in the context of the operating room.

We also performed evaluations to support our claim that our uni�ed ap-
proach accelerates the software development of intelligent assistants. First, we
gave basic training on the Active platform to a population of software develop-
ers, asking them to go through a simple tutorial. Once trained, they were able
to successfully program the core component of the mobile assistant prototype in
under two hours. As a second validation, the meeting organizing assistant was
designed, implemented and tested within three working days � comparable sys-
tems published in the literature were the product of signi�cantly more time and
resource investment. This demonstrates that a system encompassing numerous
AI and software development aspects, including language processing, multiple
modalities, contextual dialog, processing logic and backend services integration,
can be rapidly implemented and tested using the Active framework.

Our work demonstrates that for many task-oriented domains, intelligent as-
sistant applications can be signi�cantly more e�ective than conventional sys-
tems. Through our Active Ontology approach and associated methodologies
and tools, we have shown that complex intelligent assistant applications, per-
haps for the �rst time, can be developed with low cost and high reliability. In
addition to receiving a positive echo from the research world, our work is also
causing ripples in the commercial world.

2

Résumé

Les ordinateurs sont devenus bon marché, petits, omniprésents et sont sou-
vent connectés à Internet. Cependant, bien que cet environnement riche soit
à notre disposition, les interfaces homme-machine n'ont pas été adaptées pour
exploiter pleinement ce nouveau potentiel. Nous pensons que les interfaces util-
isateur vont évoluer pour devenir bien plus que les outils simples qu'ils sont
ajourd'hui. Leurs utilisateurs cherchent un nouveau type de logiciels, qui se
comportent comme des assistants à qui des tâches peuvent être déléguées. Ces
systèmes d'un nouveau genre vont nous permettre de créer des applications
qui s'articulent autour de l'utilisateur et sont capables d'interagir naturelle-
ment avec les humains et leur environnement. Bien que des progrès ont été
réalisés dans cette direction ces dix dernières années, l'état de l'art démon-
tre que construire de tels systèmes est une tâche complexe, qui requiert des
connaissances dans de nombreux domaines allant de l'intelligence arti�cielle à
la maitrise approfondie de techniques d'ingénierie logicielle et matérielle. La
di�culté à intégrer en profondeur toutes ces technologies pour produire des as-
sistants intelligents e�caces et robustes, a limité l'impact et l'adoption à grande
échelle de cette forme de logiciels.

La thèse présentée ici propose de concevoir, réaliser, mettre en oeuvre et
évaluer un outil intégré, ainsi qu'un ensemble des techniques associées, conçus
pour créer plus facilement et e�cacement des assistants intelligents. A cet e�et,
notre solution Active, introduit le concept original d'Active Ontologies qui est
combiné avec une architecture orientée service, pour modéliser et implémenter
des assistants intelligents. La suite logicielle Active est composée d'un éditeur,
un serveur et une console de gestion. Armés de cet outil cohérent et uni�é, nous
avons développé des techniques pour créer des assistants intelligents capables
de traiter le langage naturel, modéliser la logique d'une application ainsi que de
gérer dynamiquement une communauté de services.

Pour valider notre approche, nous avons réalisé et évalué plusieurs prototypes
dans di�érents domaines. Nous avons tout d'abord crée un assistant dans le
domaine de la recherche d'information pour des utilisateurs mobiles. Le système
permet de poser des questions en langage naturel, par courriel, au travers de
messages instantanés ou depuis un site web, relatives à des restaurants, hôtels,
points d'intérêt ou encore prévisions météorologiques pour n'importe quelle ville
des Etat-Unis. Dans le domaine aérien, le système permet également d'obtenir
des informations détaillées et en temps réel au sujet la majeure parties de vols au
départ ou à destination des Etat-Unis. Dans un tout autre domaine, nous avons
utilisé Active pour implémenter et évaluer un assistant destiné à aider une équipe
chirurgicale en salle d'opération. Pour se faire, nous avons réalisé un système
qui combine la reconnaissance de voix et de gestes a�n d'aider un chirurgien
à accéder à des image préopératoires (2D et 3), visualiser et contrôler un �ux
vidéo provenant d'un endoscope monté sur un bras robotisé. Finalement, nous
avons conçu un prototype d'assistant qui aide à l'organisation d'une réunion
au travers d'échanges de courriels entre l'organisateur et les invités. Ces trois
prototypes sont fonctionnels et, bien que très di�érents, ont tous été implémenté
avec Active. Cela nous a permis de démontrer la �exibilité et la viabilité de notre
approche.

Sur la base de ces prototypes nous avons montré que, dans des domaines
spéci�ques, l'utilisation d'assistants apporte plus d'e�cacité que des logiciels

3

classiques. Nous avons tout d'abord comparé notre assistant pour utilisateurs
mobiles avec le produit commercial Google MobileTM, une version spécialisée
du populaire moteur de recherche. Pour se faire, nous avons demandé à une
population d'utilisateurs de réaliser une dizaine de tâches avec les deux systèmes.
Les résultats montrent que pour un domaine dé�ni, un assistant intelligent est
signi�cativement plus e�cace et plus rapide d'une moteur de recherche classique
basé sur des mots clés. Nous avons également demandé à une population de
chirurgiens d'accomplir une séquence de tâches avec notre prototype d'assistant
pour salle d'opération. Après avoir été positivement évalué, le système a permis
de dé�nir des méthodes d'interaction e�caces entre chirurgiens et les ordinateurs
utilisés en salle d'opération.

Nous avons aussi montré que notre approche uni�ée facilite la conception
et l'implémentation d'assistants intelligents. Pour se faire, nous avons donné
une formation simple sur Active à une population de programmeurs. Ils ont
ensuite conçu et implémenté, en une heure, une application capable de traiter
le language naturel. Les programmes crées ont rempli 95% de leur cahier des
charges, et traité avec succès quasiment 80% d'un ensemble de phrases tirées de
requêtes formulées par des utilisateurs. Aussi, le système d'assistant organisa-
teur de réunion a été réalisé en trois jours, démontrant qu'Active peut être util-
isé pour rapidement créer des prototypes complets et fonctionnels d'assistants
intelligents.

Nos travaux nous ont permis de démontrer que, dans certains domaines,

des logiciels prenant la forme d'assistants sont plus e�caces que des approches

classiques. Nous avons aussi montré que notre approche uni�ée, basée sur le con-

cept d'Active Ontologies, facilite la conception et l'implémentation des systèmes

informatiques capables de traiter le langage naturel, entreprendre des actions

complexes en orchestrant dynamiquement une communauté de services. Finale-

ment, en plus des échos positifs reçus de monde de la recherche, nos travaux ont

suscité un grand intérêt du monde industriel.

Keywords : Intelligent Assistants, Arti�cial Intelligence, Software

Engineering

4

Acknowledgments

First, I would like to thank Charles Baur and Adam Cheyer for their initial
suggestions, brilliant ideas, constant support, and for providing me with an
environment in which I was able to lead my research very freely.

I would also like to thank all jury members, Prof. Michèle Courant, Prof.
Alcherio Martinoli and Prof. Hannes Bleuler for their availability and interest
in our work.

Completing this project would not have been possible without the support
of my family, particularly my wife who has provided me with needed support,
understanding and encouragement.

I would also like to express my fondness to my fellow co-workers of the VRAI
group.

Finally, this project would not have been successful without the support of
the NCCR Co-Me of the Swiss National Science Foundation and SRI Interna-
tional.

1

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Problem statement . 7
1.3 Approach and original contribution 9

1.3.1 Uni�ed approach . 9
1.3.2 Active Ontologies . 10
1.3.3 Design of Active-based methods 10
1.3.4 Application design . 11

1.4 Objectives . 11
1.4.1 Claims . 11
1.4.2 Evaluate the concept of Active Ontologies 11
1.4.3 Design and implementation of the Active framework . . . 12
1.4.4 Design of Active-based methods 13
1.4.5 Implementation of prototypes 13
1.4.6 Evaluation of claims . 13

1.5 Summary of chapters . 14

2 Literature Review 16
2.1 AI frameworks . 16
2.2 Agent architectures . 20
2.3 Intelligent assistants . 21

2.3.1 Toolkits . 21
2.3.2 Applications for a speci�c domain 23

2.4 Conclusion . 24

3 Theory of Operation 25
3.1 How intelligent assistants work 25

3.1.1 Motivation and problem space 25
3.1.2 Intelligent assistants characteristics 27
3.1.3 Relevant theories and approaches 28
3.1.4 Our intelligent assistant de�nition 30

3.2 A uni�ed integrated framework 34
3.2.1 Motivation . 34
3.2.2 The Active framework . 35

3.3 Conclusion . 38

2

4 Active Kernel 39
4.1 Active Ontologies . 39
4.2 Active processing . 40

4.2.1 Facts . 41
4.2.2 Uni�cation . 41
4.2.3 Fact store . 43
4.2.4 Rule evaluation cycle . 44
4.2.5 Simple conditions . 46
4.2.6 Conditions with variables 47
4.2.7 Compound rule conditions 47
4.2.8 Cascade Processing . 48
4.2.9 Fact creation . 49
4.2.10 Evaluation cycle control 51

4.3 The Active software suite . 51
4.3.1 Active Editor . 51
4.3.2 Active Server . 53
4.3.3 Active Console . 55
4.3.4 Language processing test console 56

4.4 Conclusion . 56

5 Active Methodologies 57
5.1 Basic methods . 57

5.1.1 Communication channels 57
5.1.2 Invocation mechanism . 59
5.1.3 Conclusion . 63

5.2 Language Understanding . 64
5.2.1 Introduction . 64
5.2.2 Grammar-based parsing with Active 65
5.2.3 Language processing with Active Semantic Networks . . . 71
5.2.4 Conclusion . 95

5.3 Service Management . 96
5.3.1 Introduction . 96
5.3.2 Active implementation . 101
5.3.3 Practical example . 106
5.3.4 Conclusion . 108

5.4 Process Management . 109
5.4.1 Introduction . 109
5.4.2 Active implementation . 111
5.4.3 Evaluation . 114
5.4.4 Conclusion . 120

6 Applications and Prototypes 121
6.1 Active Application Design . 122

6.1.1 Introduction . 122
6.1.2 Application requirements 122
6.1.3 Software design . 124
6.1.4 System evaluation . 125
6.1.5 Conclusion . 127

6.2 Online Activities Assistant . 127
6.2.1 Introduction . 127

3

6.2.2 Prototype goals . 128
6.2.3 Requirements de�nition 129
6.2.4 Implementation . 131
6.2.5 System evaluation . 139
6.2.6 Conclusion . 141

6.3 The Intelligent Operating Room 141
6.3.1 Introduction . 141
6.3.2 Prototype goals . 142
6.3.3 Requirements de�nition 142
6.3.4 Implementation . 144
6.3.5 System evaluation . 148
6.3.6 Conclusion . 152

6.4 Scheduling Assistant . 153
6.4.1 Introduction . 153
6.4.2 Prototype goals . 153
6.4.3 Requirements de�nition 153
6.4.4 Implementation . 154
6.4.5 System evaluation . 157
6.4.6 Conclusion . 159

7 System Evaluation 161
7.1 User evaluation . 161

7.1.1 Evaluation protocol . 161
7.1.2 Results . 163
7.1.3 Discussion . 163
7.1.4 Conclusion . 167

7.2 Programmer Evaluation . 168
7.2.1 Test protocol . 168
7.2.2 Evaluation . 169
7.2.3 Results . 171
7.2.4 Conclusion . 174

7.3 Performance Evaluation . 175
7.3.1 The Active Server . 175
7.3.2 Active Language Processing 182
7.3.3 Discussion . 190

7.4 Conclusion . 191

8 Conclusion 192
8.1 Contributions and results . 192
8.2 Future Work . 197

4

Document conventions

• italic : Used for emphasis and to signify the �rst use of a technical term,
usually closely followed by a de�nition or referenced in the glossary.

• Constant Width : Used for all code snippets as well as for anything that
you would type literally when programming. Also used for pseudo-code
snippets expressed in a Java-like syntax.

• Bold : Occasionally used to emphasize relevant words.

5

Chapter 1

Introduction

1.1 Motivation

The easiest way to introduce the topic and motivation of our work is to consider
the following scenario:

Dr. Stanley is a successful and highly skilled brain surgeon who lives in San
Francisco. On an early Monday morning, he drives to the Stanford hospital
where he is scheduled to perform a brain tumor removal intervention. He re-
ceives a phone call from his colleague, Dr. Livingstone from Boston. A patient,
Mr. Smith, urgently needs an important operation that requires the unique skills
of Dr. Stanley. Committed to helping, Dr. Stanley immediately agrees to �y
out to Boston on the very same evening. After asking the social security num-
ber of the patient to operate, he calls his assistant to book an airplane ticket
from San Francisco to Boston anytime after 5 pm and requests medical details
providing Mr. Smith's social security number. In addition, he noti�es his assis-
tant about his new schedule so that existing appointments can be re-scheduled.
Minutes later, he gets a short message about possible �ight schedules to book.
The message also indicates a tra�c jam on highway 280 and advises switching
to highway 101 instead. Successfully avoiding road congestions, Dr. Stanley
arrives at his o�ce and logs on his computer to start preparing for the morning
brain surgery. He notices that all information about Mr. Smith has been deliv-
ered to his computer, organized appropriately. While working on pre-operation
planning, he receives an email to con�rm the �ight he picked earlier. As Dr.
Stanley walks to the operating room for the surgery, his pager noti�es him that
an email arrived for him about hotels to choose in Boston. As he gets to the
operating room, he greets his sta� and logs on to the operating room computer,
which automatically loads all prepared information about the patient to operate.
The surgery to perform is a frontal tumor extraction, the tumor being located on
the surface, between the patient's skull and cortex. By interacting with his as-
sistant Dr. Stanley gets helps to quickly and easily navigate pre-operative data
reconstructed from the patient's brain. He also instructs his assistant to take
photos, control light conditions and move the powered microscope enhancing his
view of the work area. E�ective collaboration in the operating room allows Dr.
Stanley to accurately pinpoint the location of the tumor to extract. The op-
eration is a success, and as Dr. Stanley leaves the operating room, his pager

6

delivers all pending messages received while he was operating. A message from
Dr. Livingstone con�rms the reception of the �ight information and that he will
personally be picking Dr. Stanley at the Boston airport.

This simple scenario introduces two types of assistants. The �rst one, helps
with organizing daily tasks, making reservations and delivering relevant infor-
mation at the right time, through the most appropriate channel. A second type
of assistant is specialized to provide help in a speci�c environment, an operating
room in our case. Both examples show how users can focus on the most im-
portant aspects of their activities by delegating background tasks to assistants.
Today's technology is mature enough to create software systems implementing
such intelligent assistants, able to naturally interact with users to understand
requests and execute complex tasks. The goal of the work presented here is to
explore, create and evaluate software tools and techniques to ease the design
and implementation of such assistants.

1.2 Problem statement

Computer systems are constantly and rapidly growing in processing power, com-
plexity and inter-connectivity. On the hardware side, even considering conserva-
tive estimates of Moores Law, in the coming decades microprocessors are likely
to surpass the processing power of the human brain. Leveraging this potential,
CPU intensive software applications can perform complex tasks more easily.
For instance, components such as speech recognition and synthesis, real-time
vision systems or rich graphic applications are now commonly used in software
applications. In addition to hardware and software progress, computers are not
isolated processing nodes anymore, they are part of a large worldwide network.
The ability to easily create networks of computers paves the way to new soft-
ware designs where applications are not large monolithic programs anymore, but
made out of loosely coupled distributed independent services. Parallel advances
along these three axes, hardware, software and networking, are dramatically
increasing the potential of new technologies.

This triple push forward is driven by both the industry and the research
world. Hardware manufacturers are supporting the development of a wired,
and increasingly wireless, global network. Major players of the microproces-
sor industry are creating smaller, less power hungry and more powerful chips
that become the computing core of not only computers, but mobile devices,
cars and various appliances[70]. The software industry is also fueling the trend.
Standards for reliable, secure and e�cient service-oriented distributed architec-
tures are being de�ned and implemented. In addition, lightweight operating
systems are available to allow the creation of mobile applications. As a conse-
quence, computer technologies are becoming more ubiquitous, more a�ordable,
and more widely accepted by users and customers.

These dramatic improvements in networking, software engineering and pro-
cessing power open the door to a new breed of software systems. Despite major
breakthroughs in both hardware and software technologies, user experience with
computer-based systems have not changed, and the opportunity to create soft-
ware that better leverages these advances has not yet been exploited.

New technologies, coupled with the massive amounts of data and services
accessible via the Internet, open the door to the design and implementation

7

Observe Act

Understand
Learn

Environment

Figure 1.1: Intelligent Assistant Functional Diagram

of user-centric systems that act as intelligent assistants, able to interact natu-
rally with human users and with the information environment[49]. In our view,
user interfaces will evolve from simple tools using a click-and-act paradigm to
become assistants to whom tasks can be delegated. Today's available and af-
fordable technologies provide many scenarios where intelligent assistants could
be given simple tasks. As an example, let us consider someone looking for a
�ight from San Francisco to Boston for a speci�c date. Instead of the user
milling through multiple web sites to get quotes, one should be able to express
the request in a more natural way by, for instance, simply sending an email
to an intelligent assistant stating in plain English: ��nd me the best �ight from
SFO to Boston next Thursday�. The system would then start executing the task
by automatically querying online sites or even paying services to get quotes. It
would then send an email back to the user with a list of possible �ights or a
request for more details. Through such thread of email messages, intelligent
assistants engage in natural and non-intrusive dialogs with users.

Personal assistant applications present intuitive user interfaces, for users to
delegate tedious tasks while focusing on the most important aspects of their
activities. As described in the previous scenario, personal assistants interact
naturally through input (i.e. emails and instant messages expressed in natural
language, speech and gesture recognition) and output modalities (i.e text gener-
ated emails, instant messages, sounds, speech synthesis or robotics). This mode
of interaction saves users from learning about multiple program interfaces and
unleashes the software component from its sometimes cumbersome keyboard
and mouse. Voice-based natural interaction makes it possible to delegate tasks
to personal assistants from anywhere. The ability to easily express and delegate
tasks keeps the mind of users clear, allowing them to focus on their most im-
portant activities. Finally, personal assistants are constantly on alert to provide
critical information through the most appropriate channel.

Intelligent personal assistants, also called interface agents, are software sys-
tems designed to process high level tasks delegated by human users[53]. The
main idea is to move from the direct manipulation of a tool-like software pro-
gram to delegated and dialog-based natural interaction. By nature, such soft-
ware system consists of a mix of AI and HCI to provide three main functional
features: sensing, reasoning and acting. First, to sense and observe its envi-
ronment, including human communications, an intelligent assistant provides a

8

user interface component. Intelligent assistants should be able to interact nat-
urally with human users using a wide variety of modalities, both synchronous
(direct mouse, keyboard inputs or speech recognition) and asynchronous (email
messages). Secondly, to analyze and understand a situation there is a need for
natural language processing and activity recognition. Finally, to undertake a
sequence of actions that will produce relevant and useful behavior planning and
execution abilities have to be included.

Building software assistants is a di�cult task that requires expertise in nu-
merous AI and engineering disciplines [84]. Perception of human activities is
typically based on techniques such as computer vision or speech recognition.
Natural language processors and dialog systems often require advanced knowl-
edge of linguistics. Activity recognition approaches are frequently implemented
using Bayesian or other statistical models. Decision making strategies and com-
plex task execution are the responsibility of planning and scheduling systems,
each potentially bringing a new programming language to learn. Finally, as
planning unfolds, various actions are taken by the system to produce relevant
behavior, often across a wide range of modalities and environments. Substan-
tial integration challenges arise as these actions communicate with humans,
gather and produce information content, or physically change the world through
robotics. Testing and debugging an environment of such heterogeneous intricacy
requires strong technical knowledge and a diverse set of tools.

1.3 Approach and original contribution

As previously described, intelligent assistant software is becoming a necessity
but is di�cult to design, implement and deploy. To the best of our knowledge,
there is currently no integrated tool and methodology to easily and e�ectively
build intelligent assistant systems. What if there were a toolset and associated
methodologies that lowered the bar for creating intelligent applications, such
that a single software developer could rapidly model a domain and then apply
many of the best AI techniques to web-accessible data and services through a vi-
sual, drag-and-drop interface, easy-to-use wizards, and a familiar programming
language? This is the vision and goal of the work presented here.

1.3.1 Uni�ed approach

To ease the development of intelligent assistants and solve some of the prob-
lems described above, we propose a uni�ed tool and associated methods for
developing AI-based software.

Many intelligent assistant systems are built around powerful processing cores
(reasoning, learning, scheduling and planning) connected with separate compo-
nents in charge user interaction (language processing, dialog management, user
interface rendering). It is often a signi�cant challenge to perform the integration
and mapping of a user-model or a problem domain into the background reason-
ing components and structures as signi�cant information must �ow back and
forth during processing and dialog. Additionally, maintenance is a challenge, as
improvements and new features require work on both front and backend layers,
as well as to the inter-layer communication interface.

9

By contrast, our approach provides a uni�ed platform where core processing
and user interaction come together in a seamless way. Our platform, Active, is a
toolset and associated methods to create intelligent applications featuring core
reasoning, user interaction and web services integration within a single uni�ed
framework. Using Active Ontologies, where data structures and programming
concepts are de�ned in ontological terms, software developers can rapidly model
a domain to incorporate many of the best AI techniques and web-accessible data
and services through a visual, drag-and-drop interface, easy-to-use wizards, and
a familiar programming language.

1.3.2 Active Ontologies

Our development suite, called Active, is based on the original concept of Active
Ontologies, used to model and implement applications. A conventional ontol-
ogy is de�ned as a formal representation for domain knowledge, with distinct
concepts, attributes, and relations among classes; it is a data structure. An Ac-
tive ontology is an enhanced ontology where processing elements are arranged
according to ontology notions; the ontology becomes an execution environment.

An Active Ontology consists of interconnected processing elements called
concepts, graphically arranged to represent the domain objects, events, actions,
and processes that make up an application. In Active Ontologies, relationships
among concepts not only represent information about how concepts are related,
but also provide communication channels for the processing elements attached
to concepts. The logic of an Active application is represented by rulesets at-
tached to concepts. Rulesets are collections of rules where each rule consists
of a condition and an action. Each Active ontology is associated to a data
store, used to persist facts that represent the state and variables of the current
processing. When the contents of the fact store changes, an evaluation cycle is
triggered and concept conditions are evaluated. This innovative approach where
an ontology and a production rules engine techniques are combined is the basis
of the Active framework. When designing an Active-based system, both the
domain of the application and the associated processing rules can be expressed
in a single uni�ed view.

1.3.3 Design of Active-based methods

Based on the implementation of the Active framework, a set of methodolo-
gies needs to be implemented to create mixed-initiative applications. Mixed-
initiative systems combine human and computer-based reasoning to accomplish
complex tasks. To create such intelligent assistant applications, we identi�ed a
set of AI-based techniques to be implemented with Active :

• Language Processing. Natural language processing is in charge of gather-
ing information coming from sensors, match it with the application domain
to produce a command or plan to be executed by the system. Our goal is
to provide an Active-based technique that allows programmers to model
an application domain and associated processing constrains. This stage
also features fusion of modalities, where for instance, users can express
commands by a combination of voice and gestures. Language processing

10

also includes reference resolution and disambiguation. For instance, ref-
erence resolutions would automatically resolve a city name if a zipcode
(postal code) is sensed. Disambiguation should provide a set of heuristics
to resolve cases where multiple parsing options have the same weight.

• Process Management. Process modeling consists of de�ning a sequence of
actions to perform a complex command, typically produced at the lan-
guage processing level. Process de�nitions represent �nite state machines
associated with a set of variables. Multiple instances of a same process
can be running at the same type, for instance to support multiple users
running simultaneous dialogs with multiple instances of an assistant.

• Service Management. Dynamic service brokering uses agent-based tech-
nologies to provide on-the-�y selection of resources. For instance, noti�-
cation messages are sent to users through the most appropriate modality
(email, instant messenger or short message) given the current user lo-
cation, preferences or any other parameters such as the priority of the
message to deliver.

1.3.4 Application design

An Active-based application (see �gure 1.2) consists of a set of loosely coupled
services working with one or more Active Ontologies in charge of core reasoning
tasks. A service oriented approach provides multiple advantages. Using loosely
coupled services eases integration of sensors (e.g. speech recognition, vision
systems, mobile or remote user interfaces), e�ectors (e.g. speech synthesis, user
interfaces, robotics), data source (i.e. database) and processing services (e.g.
processing intensive data processing such as translation). In addition, services
are generic and can therefore be reused as building blocks for multiple di�erent
Active powered applications. Finally, using a non-monolithic approach allows
us to use agent-based techniques to dynamically orchestrate services.

1.4 Objectives

1.4.1 Claims

The main objective of our work is to validate two claims.

• Using Active, AI methodologies can be encapsulated to be easily and ef-
fectively applied to build assistant-like software.

• Assistant-like software can, in some domains, be more e�cient and provide
better experience than traditional software.

The following sections describe our plan to validate both claims.

1.4.2 Evaluate the concept of Active Ontologies

Our �rst objective consists of evaluating and validating the concept of Active
Ontologies. The following aspects need to be evaluated:

11

Understand

Observe Act

Core Application

Service
Service

Service

Service
Service Service

Figure 1.2: Active Application Design

• Flexibility and expressiveness. Active Ontologies need to provide a rich
enough language to adequately encode a diverse set of AI methodolo-
gies, ranging from sensing and fusion, language interpretation and dialog,
activity recognition, planning and scheduling, and agent-based service co-
ordination and delegation.

• Robustness and performance. The approach and its implementation needs
to provide an acceptable response time for end-to-end management of
sensor inputs and user requests.

1.4.3 Design and implementation of the Active framework

To apply Active concepts to real-world situations, a software implementation
needs to be designed and developed. With this objective, four tools have been
developed.

• A server to host and run Active Ontologies. The server engine is in charge
of hosting multiple Active Ontologies, maintaining their state and period-
ically evaluating their rules to execute relevant actions. To encapsulate
AI techniques and provide ease of integration, the server has a plugin
mechanism to easily extend its capabilities.

• An integrated development environment (IDE) to provide Active devel-
opers with a tool to create, deploy, debug and test Active Ontologies.
Similarly to the runtime server, the IDE provides a plugin-based mecha-
nism to extend its feature set.

• A management console that can introspect and control a runtime server
for administrative and monitoring tasks.

12

• A natural language test tool accepts both interactive and batch-mode
inputs to support development and regression testing of natural-language
applications.

1.4.4 Design of Active-based methods

Using the tool described above, a set of programming techniques have been
developed. These techniques implement the three component types de�ned in
section 1.3.3 : language processing, process management and dynamic service
selection and invocation.

1.4.5 Implementation of prototypes

To apply our approach in real-world situations, we have developed assistant-
oriented applications in three domains.

• The operating room. Computers are part of the standard equipment used
in modern surgery rooms to help surgeons perform complex operations
that would not have been feasible before. However, limited user interfaces,
combined with the speci�c constraints of the operating room, prevent
surgeons and their sta� from fully leveraging this technology. Surgeons
and their sta� need to interact with computers as easily and naturally as
if they were just another member of the team. Our goal is to create a
prototype of an intelligent assistant and have it evaluated by surgeons to
assess if this approach is bene�cial to their work.

• Mobile communication. Computer-phones and PDAs have become a�ord-
able, small, omnipresent and are often connected to the Internet. However,
despite the availability of such rich environment, user interfaces have not
been adapted to fully leverage its potential. To help with complex tasks
and retrieve information, a new type of software is needed to provide more
user-centric systems that act as intelligent assistants, able to interact nat-
urally with human users and with the information environment.We in-
tend to design and implement a system able to retrieve online information
through dialog-based natural language interaction.

• O�ce assistant. The �eld of o�ce-related tasks is popular for intelligent
assistant applications; examples include an intelligent meeting planner, a
smart email sorting agent or an intelligent meeting room. This is a �eld
where an Active-based system can be compared with similar approaches.

1.4.6 Evaluation of claims

To validate our approach and verify our claims, the following evaluations have
been undertaken.

• To validate the Active approach, both in terms of theory and practice, we
have implemented the three prototype applications described in section
1.4.5

13

• To quantify how assistant-oriented software can be more e�ective and en-
joyable than traditional software such as search engines, we placed our Ac-
tive Mobile prototype head-to-head against the leading commercial mobile
search engine, Google MobileTM .

• To demonstrate that we have been successful in lowering the cost, time,
and specialized knowledge requirements for developing integrated AI assis-
tants, we asked �normal� programmers to learn the Active methodology,
and measured the training and development time for implementing the
language understanding module of the Active Mobile prototype described
in the previous evaluation.

1.5 Summary of chapters

The thesis is divided into the following chapters:

• Chapter 2 describes the state-of-the-art of research projects related to
intelligent assistants. Relevant work is organized in three categories : AI
frameworks, agent architectures, and intelligent assistant software.

• Chapter 3 provides the motivation and re�ections that led us to design
intelligent assistant applications with Active Ontologies. It starts with
a de�nition of intelligent assistant, followed by a brief description of the
research that inspired our approach. It concludes by presenting a high
level introduction to the Active framework.

• Chapter 4 provides a detailed description of Active Ontologies and the ba-
sic elements of their execution. It also presents the current implementation
of the Active software suite.

• Chapter 5 presents Active-based AI methodologies. It start with basic
techniques, then moves towards more complex methods implementing lan-
guage processing, process modeling and dynamic service management.

• Chapter 6 depicts Active-based prototypes deployed in three di�erent ap-
plication domains. The description of each prototype starts with the goal
that motivated their implementation. This is followed by a constraint
de�nition, implementation description and evaluation. Evaluations are
two-fold. First, functional tests are used to verify that the implemented
prototype complies with its requirements. Secondly, prototypes are used
as tools to evaluate, through a population of end-users, the advantages of
user-centric intelligent applications over conventional user interfaces.

• Chapter 7 provides three evaluations of the Active approach. First, we
evaluate our claim that intelligent assistant software can be more e�ec-
tive than traditional software � this is tested by user studies comparing
an Active-based mobile assistant to the leading commercial mobile search
engine. Next, we evaluate our claim of making AI technologies more ac-
cessible to �regular� programmers. To do this, a number of programmers,
unfamiliar with AI-technologies, are asked to create a language process-
ing application using our tool. We measure time to completion and the

14

quality of the achieved systems. Finally, to validate that our methods
are computationally tractable and scalable, we measure the performance
of the current implementation and identify its strength and weaknesses.
It provides suggestions about how one might implement a commercially
viable system inspired by our work.

• Finally, chapter 8 concludes the thesis by summarizing achievements and
discussing future research.

15

Chapter 2

Literature Review

This chapter presents relevant work related to our research. Our proposition, the
creation of a platform aimed at easing the development of intelligent assistants,
involves many technologies. The domain of related work to study being rather
wide, we have organized this review in three sections:

• AI Frameworks : generic tools designed to be the foundation of AI-based
systems.

• Agent Architectures : agent-based systems used to create user-centric
applications.

• Intelligent Assistant Software : a review of systems that assist users in
speci�c domains, and relevant work that focuses on specialized components
such as language processing, dialog management or user interfaces.

2.1 AI frameworks

This �rst section presents frameworks designed to be the core foundation of intel-
ligent systems. These include production rule systems, Belief-Desire-Intention
(BDI) frameworks, Event-Condition-Action (ECA) platforms, and cognitive ar-
chitectures of various kinds.

The �rst class of generic AI applications we reviewed are production rules
systems. Before introducing the most relevant work of this area, we brie�y
present the main characteristics of production rule systems. The goal of such
systems is to model and implement human-like reasoning. Production rule en-
gines are typically made of a set of rules, a memory and an inference engine.
Each rule is made out of a condition and an action; conditions are boolean ex-
pressions based on the content of the memory. The memory is a data store used
to represent the current state of the system. An inference engine is in charge
of evaluating the conditions of the rules. For each rule whose condition is veri-
�ed, the corresponding action is executed. When �red, actions can modify the
memory of the system, thus triggering further rules execution. This chain of
events, called forward chaining, is a method used by production rule systems to
implement reasoning.

In both the academic world and the industry, many projects have led to the
implementation of production rule systems. In the academic world, the most

16

mature and utilized system is CLIPS[22]. Under development since 1985, CLIPS
combines production rules, object oriented and procedural programming. The
language to express conditions and actions has a Lisp-like syntax. A template
de�nition mechanism allows the speci�cation of data structures, where members
have a name, a type and a default value. On the implementation side, CLIPS
is written in C and implements the Rete[19] algorithm for fast rule evaluation.
In the same family, Jess[20] is a Java based production rule system, originally
inspired by CLIPS. After its initial implementation, Jess diverged from CLIPS
and has now its own unique feature set. CLIPS and Jess are designed to provide
general purpose production rule systems, whereas Active is designed as a pro-
grammer friendly tool to build intelligent assistant software. As very e�cient
and mature production rule engines, CLIPS and Jess could conceivably be used
to be the processing core of the Active system. To rapidly add all necessary fea-
tures, easily be modi�ed and optimized, Active currently uses its own speci�c
inference engine. This decision, made at the early stage of the development of
Active, allowed us to quickly design, implement, experiment and validate our
approach. Since Jess is implemented in Java, it is an excellent candidate to
be integrated into the Active platform to provide an alternate, very e�cient
processing core.

In the area of AI framework, the closest work to Active may be the SOAR
project[45]. Since 1983, SOAR o�ers an open, uni�ed framework for building in-
telligent cognitive systems using a foundation based on production rules. SOAR
is inspired by the principle of the uni�ed theory of cognition [61], stating that
a single uni�ed set of mechanisms can be used to model all cognition. In this
context, the term cognition (from the Latin cognoscere, �to know�) refers to
the process of reasoning, which includes knowledge, perception and awareness.
The SOAR implementation features a programming language and an engine to
run models (SOAR programs). The SOAR production rule engine has built in
mechanisms for con�ict resolution and learning. Con�ict resolution is based on
the principle of sub-goaling. When two con�icting rules are applicable, current
activities are paused until the con�ict is resolved using production rules. Learn-
ing is performed through chunks, where new production rules are created from
the deliberations of the SOAR engine. Similarly to SOAR, Active can be cast
as a cognitive architecture, but it is not as advanced when it comes to built-in
features for learning and con�ict resolution. In addition, Active is designed to
explore and implement applications in a more pragmatic way. It was primarily
designed to encapsulate AI techniques required to build intelligent assistants.
On the other hand, SOAR is a tool to help understand how intelligence and
cognition, in a broader way, can be modeled and analyzed. The Active Ontol-
ogy approach o�ers some advantages in rapidly modeling an application, but
in many ways, Active can be thought of as a lighter-weight, developer-friendly
version of SOAR that works well in an Internet and web-services environment.

Another cognitive architecture aiming at implementing a uni�ed theory of
cognition is the ACT-R framework[2]. It consists of a production rule system,
with two fundamental elements. First, chunks represent knowledge in a declara-
tive style: Paris in the capital of France, 1+2 = 3. The second type of elements
are productions, or sets of production rules. At each evaluation cycle, the bu�er,
or working memory, is tested against the productions rules to pick candidates
for execution. Only one rule can �re at each cycle and a speci�c con�ict res-
olution technique is used to pick the winner. ACT-R is a dynamic project,

17

enjoying a large community of users and is used in numerous academic projects.
Unfortunately, its richness, complexity and limited extensibility has prevented
ACT-R from being used as the core of an open system including user interfaces
and easy integration with external components. Even if modules can be written
to connect ACT-R with the external world, allowing integration with user in-
terfaces and data sources, the inherent complexity and LISP-like programming
language con�nes its usage to a small domain of specialists. There are two main
di�erences between ACT-R and Active. First, on the core reasoning side, Active
is based on a more simplistic approach where multiple rules can be executed at
each cycles, leaving con�ict resolution under the responsibility of programmers.
Secondly, Active was designed to be open and extensible. Open to easily reuse
existing components through standard API, and extensible so that programmers
can encapsulate and easily share their Active-based programming techniques.

Similarly, the Icarus[46] architecture aims at constructing an integrated cog-
nitive architecture to model and control an agent in a complex physical environ-
ment. Unlike cognitive architectures presented earlier, Icarus is not based on a
production rules but uses a hierarchy of probabilistic concepts and a repertoire
of plans, or skills, dynamically selected to produce the most appropriate be-
havior. Icarus is a powerful architecture, but is primarily designed for modeling
interactions of physical agents (robots) and their environment. Unlike Active, it
does not provide language processing nor dynamic services invocation modules.

A second group of engines designed to implement multi-purpose reasoning
systems consists of BDI-based[64] applications. BDI software architectures are
agents whose behaviors are based on beliefs, desires and intentions. Beliefs
represent the information agents assume about their environment. Beliefs can be
sensed from the environment, communicated by other agents or locally inferred.
The term belief, used instead of knowledge, denotes that the information is
unreliable and can be erroneous. Desires represent the overall tasks the agent
has to ful�ll. Intentions are goals the agent has committed to and started
to implement. To illustrate these concepts, let us consider simple outdoors
mobile robot application. The task of the robot is to navigate from its current
location to a target position. Our robot uses a GPS system to keep track of
its current position and is equipped with vision sensors to detect obstacles.
Its goals are to reach its target position (reach-the-target goal) while avoiding
obstacles (avoid-obstacle goal). At �rst, the reach-the-target goal becomes an
intention and the robot starts moving towards its target location. The current
beliefs of the robot consists of its current location, constantly updated from
the GPS sensor, and the goal position. Suddenly an obstacle is detected by
short range vision sensors, immediately reported as a new belief. This new
state upgrades the avoid-obstacle goal into an intention. The robot is not only
trying to reach its �nal goal, but is also undertaking actions to avoid an obstacle
by, for instance, triggering a sharp left turn. Once the sensors report no more
obstacles, the avoid-obstacle intention becomes a goal and to robot resumes its
journey towards its �nal goal. This examples illustrates the main characteristic
of BDI agents. They are situated (are part of an environment), goal directed and
reactive. Numerous software systems implement the BDI approach. Reactive
planning systems have been used in the �eld of mobile robotics[44] and multi
agent planning[82]. More recently, light-weight and programmer friendly BDI
systems have become available. The Jack[8] toolkit is a commercially available
tool designed to build multi-agent systems whose behavior is driven according

18

to BDI notions. The open-source Jam[39] system and research engine Spark[58]
are both BDI engines entirely written in Java. BDI-based engines would be
well suited to be the core of our research, where dynamic decisions need to
be made to respond to an event. Their design is nevertheless constrain us to
dynamic planning and would not be suited to implement tasks such as natural
language processing or modality fusion. Our goal is to cover a broader set of
AI techniques to provide, in a uni�ed tool, all components required for building
assistant-like applications.

Event if they were not originally as AI tools, ECA (Event-Condition-Action)
systems bear many similarities with pure AI frameworks and have therefore been
used as the processing core of reasoning systems. ECA rules provide conditional
actions based on both event detection and data constraints. A rule is expressed
as follows : on event if condition then action. An action is executed when a
speci�c event occurs and a condition, historically based on a database query,
is veri�ed. ECA based engines have been used for database management[51],
semantic web reasoning[63] and business process modeling [43][12].

The Numenta[32] platform attempts to create cognitive applications based
on a technique inspired by the human neocortex. The system aims at solv-
ing problems such as object recognition, speech understanding, navigation or
predictions. The foundation of Numenta is the Hierarchical Temporal Memory
(HTM), a paradigm inspired from Baysian networks. An HTM is an upside-
down tree-like structure made out of connected nodes. Terminal nodes (leaves
at the bottom of the structure) are fed with raw sensory data. They analyze
incoming information to detect patterns and sequences that repeat over time, to
infer beliefs and report them to their parent nodes. Non-terminal nodes receive
information from their children, analyze them and, in turn, report beliefs to their
own parents. All nodes (leaves and non-leaves) run the exact same algorithm.
Numenta is a challenging project aiming at modeling the low-level operation of
the human brain to solve cognitive tasks. In contrast, the goal of Active is to
provide a platform working at a higher level, providing coarser-grained AI-based
components used in user-centric intelligent assistant applications.

The CALO project[5] is a large, 25-institution e�ort aimed at designing and
deploying a personal assistant that learns and helps user with complex tasks
in the o�ce domain. CALO is an extremely heterogeneous system, involving
components written in eleven di�erent programming languages. CALO meets
the requirements for which it was designed but is not a cognitive architecture
tool to be used non expert programmers.

Similarly, the RADAR project[57] is focused on developing intelligent assis-
tants designed to help users deal with crisis management. Its �exibility and
sound design have allowed the system to be e�ectively deployed and tested by
users. However, its complexity prevents programmers from rapidly get up to
speed without learning about implementation details and AI concepts. Both
RADAR and CALO are specialized, learning-based assistants that would be
very di�cult to adapt for other domain applications.

The MULTIPLATFORM testbed[34] is a generic service-oriented software
framework for building dialog systems. It has been used in numerous applica-
tions ranging from interactive kiosks to mobile assistants. Although is has shown
robustness and e�ectiveness, the system lacks some of the �exibility required to
support dynamic planning and runtime recon�guration. All data structures and
messages exchanged among components are de�ned as XML documents at de-

19

sign time, and cannot be easily changed on the �y. Adding new types of services
requires the application to be taken o�ine and redesigned, whereas we are try-
ing to provide a more dynamic environment where services and service types
can easily be added to the system.

2.2 Agent architectures

Agent architectures are software systems made out of independent intelligent
entities called agents. Each agent has its own behavior, goals and representation
of the world. A communication system allows agent to exchange information.

In this �eld, the open agent architecture [10] (OAA) introduces the powerful
concept of delegated computing. Similarly to our approach, OAA systems con-
sist of communities of services whose actions are combined to execute complex
plans. Requests and plans are delegated to a facilitator in charge of orches-
trating actions based on declared capabilities of agents. Thanks to its ease
of deployment and clean design, OAA is used in a large number of projects.
The design uni�es in a single formalism the application domain knowledge, the
messages exchanged among agents, the capabilities of agents and data driven
events. Though very powerful, OAA does not provide a uni�ed methodology to
create intelligent systems. It rather provides a robust and �exible framework
where heterogeneous elements, written in many programming languages, are
turned into OAA compatible agents to form intelligent communities. The goal
of Active is to not only provide an OAA inspired delegated-like computing, but
also in a uni�ed fashion, provide the language processing and plan execution
components required to build intelligent assistants.

Similarly, the Retsina [74] framework is an advanced multi agent architec-
ture to build distributed intelligent systems. It is based on four classes of agents.
Interface agents that interact with users, task agents that carry out plans, in-
formation retrieval agents and middle agents to help match agents that request
services with agents that provide services. Though very e�cient in producing
independent reactive behavior, Retsina would not be suited as a uni�ed method-
ology to implement basic AI components such as natural language processors
or multi-modal fusion engines. In addition the design of Retsina uses di�erent
formalisms for communication, domain representation and reasoning technique.
In contrast, our aim is to use the same formalism for all intelligent assistant
aspects.

Another advanced agent architecture is the CoABS[41] grid, a DARPA
funded project whose goal consists of creating a grid of heterogeneous agents.
The middleware o�ers registration and lookup for dynamic, on the �y discovery
of services. It also provides high level layers to encapsulate the complexity of
data marshaling and security aspects of communications. In addition, mobile
applications are supported, where entire agents can migrate from one host to
another for optimized execution. CoABS is a powerful Java-based middleware
but, unlike OAA or Retsina, does not provide any means to orchestrate agents
on the grid. For basic inter-agent communications, our work will rather rely
on open standards such as SOAP or REST and implement the reasoning of
discovery and selection of services at a separated layer based on the delegation
mechanism introduced by OAA.

20

2.3 Intelligent assistants

This section presents relevant work directly applied to the �eld of intelligent
assistant systems. Its �rst part presented toolkits and components designed to
be used as building blocks for assistant-like applications. The second section
presents relevant examples of actual intelligent application prototypes.

2.3.1 Toolkits

This section presents relevant architectures designed speci�cally to implement
intelligent assistants. We also mention projects that provide important compo-
nents to be integrated into the design of interactive assistant systems, such as
specialized language processing systems or dialog managers.

It would not be fair to start this section without mentioning Eliza [81],
the 1966 intelligent assistant-like system aimed at emulating a psychotherapist-
style dialog. The system uses a combination of keywords and rules to create an
intelligent behavior mostly by paraphrasing user inputs. As the �rst attempt
to create intelligent human-computer dialog, Eliza is an important milestone of
the �eld of intelligent assistants. Since the Eliza times, computers and their
environments have dramatically changed leading to many projects aiming at
providing intelligent and natural computer-human dialogs.

The SmartKom[79] program is a large research project whose goal is to build
systems that interact with humans through natural modalities such as speech
and gestures. Research focus is on multimodality (disambiguation and fusion)
and dialog management. SmartKom applications are based on a three-tier ar-
chitecture : multimodal sensors and e�ectors integration, dialog management
and backend connections. The core of the system consists of several indepen-
dent programs, written a di�erent programming languages, running on multiple
computers that communicate through XML-based messages. The approach has
been validated through three types of applications (mobile, kiosk-like systems
and home-o�ce assistant) that have been positively evaluated. Due to its highly
heterogeneous and distributed nature, though very powerful, Smartkom could
not easily be used as a lightweight and uni�ed framework used by a small team
of engineers to quickly build simple intelligent-assistant applications.

The Collagen[65] toolkit proposes to build autonomous agents that inter-
act with human users by collaborating through shared tasks. The approach
is generic, easy to learn, natural to use and does not require formal language
parsing. Collagen interacts with the user through a dynamic user interface, of-
fering options limited to the current state of the dialog. Since the user cannot
freely express commands, there is no need for language processing. Constrained
applications are by nature more robust than more open systems where users
can express any command at any point. They are nevertheless less intuitive
and sometimes tedious to use because complex operations are restricted to a
prede�ned logical path. A common example of such interface is a phone-based
system, where users are prompted about a limited set of options at each step of
the dialog. Collagen also di�ers from our approach in its specialization to only
solve the dialog interaction where we try to provide a broader tool to construct
intelligent assistant applications.

TRIPS[17] is an AI integrated system providing an end-to-end framework
to build mixed-initiative problem solving assistants. The system is organized

21

around three main components. Modality processing: provides user input gath-
ering (including speech recognition, spelling correction) and user interface out-
put (including graphics and speech synthesis). Dialog management: the core
of the system, manages ongoing conversations, contexts and coordinates spe-
cialized reasoners through its plan solving manager. Specialized reasoners: spe-
cialized application speci�c reasoning components. Designed to help users in a
crisis context and planning, prototypes of assistants based on TRIPS have been
designed in the �eld of rail-based freight delivery and crisis management (evac-
uation of people and airlifting). TRIPS is a robust and powerful platform that
has been used and validated in di�erent applications. However, it is special-
ized and optimized for crisis management, whereas Active aims at being more
generic and used in a broader range of application domains.

The domain pervasive computing [71] is driving relevant work in the domain
of user-centric applications. The �eld envisions smart spaces, where our habitat
(i.e. homes, cars or work places) becomes aware of our presence and activities
to help and communicate with us as we go about our tasks. Computing moves
away from the console-keyboard-mouse paradigm to become invisible, seamlessly
integrated into our environment. In this context, the Oxygen project[68] from
MIT articulates this vision around multiple axis. Devices, mostly handheld,
allow users to be connected with the Oxygen network. An intelligent network
allows Oxygen compliant devices and sensors to discover each other to exchange
relevant information. Perceptual technologies (speech and vision) and software
components complete the framework. Oxygen is a thriving think-tank, where
technologies and ideas are brewed together to create exciting user-centered ap-
plications. There is nevertheless no attempts to �nd a uni�ed approach to solve
the numerous challenges involved in creating intelligent assistants. Our goal is
far less ambitious in the scale of applications to create. It consists of �nding
the common denominator of some aspects required for user-centric applications
and to implement them in an easy-to-use, uni�ed and coherent toolkit.

Similarly, the XCM[75] approach proposes to model coordination of perva-
sive computing applications around four concepts: entities, environment, rules
and apis. As its representation, the model uses the OWL language, developed
for the Semantic Web to represent ontologies. Alike the Active framework, XCM
proposes a blend between rules (called social laws) and ontologies to drive the
behavior of a community of components working for a user. The focus and
strength of XCM are on coordination of services, whereas Active proposes to
cover a shallower, but broader set of intelligent assistant applications compo-
nents. Active is not as powerful and accomplished in terms of coordination, but
aims to be a tool usable for the entire design and implementation of pervasive
applications. It would be an fruitful exercise to implement the powerful XCM
philosophy with the Active framework, as another AI-based technique supported
by our framework.

Finally, the OneWorld[24] project aims at providing developers with a frame-
work to build applications in highly dynamic environments. The service oriented
framework is based on service discovery, software migration and universal access
to information. Three main principles drive the e�ort. First, services need to
expose change, mainly failure to �nd a speci�c service, so that programmers
can easily provide e�ective exception policies. Secondly, service actions should
be composed dynamically, hard-coding or tight coupling of resources should be
avoided. Finally, data representation should be separated from functionality,

22

so that generic pieces of data can be routed to di�erent services for process-
ing. One.World has inspired our work and provides a powerful framework for
distributed systems designed to be deployed on highly dynamic environments.
Our approach brings similar ideas in the senses of delegation, where services are
not only dynamically composed, but also selected on the �y. Selection is not
only based on service availability and advertised functionality, but also on the
current application context such as user location and preferences.

2.3.2 Applications for a speci�c domain

In this section we describe relevant prototypes of mixed-initiative assistants
designed for speci�c application domains.

Smart Sight[86] is an assistant that provides help to a tourist through a
multimodal interaction based on speech, vision, voice and gestures. At the user
interface level, a multimodality manager gathers user inputs through a set of
recognizers (speech, handwriting and gestures). Then, at a second processing
stage, a parser combined with a semantic analyzer converts inputs into struc-
tures to be further processed by a dialog manager. The dialog manager deals
with dialog acts, modeled as production rules used as webform-like interaction
model. When all attributes of the form are speci�ed, the rule �res and its
action is delegated to a specialized procedure in charge of undertaking the as-
sociated actions. This system is interesting because it shows some similarities
with Active-based systems. First, it makes use of an ontological representation
of the application domain to construct semantic information out of the raw re-
sults from a parser. It also uses production rules as the processing mechanism
for the dialog manager. There are nevertheless two major di�erences with our
approach. First, since Active uni�es all stages of processing through the same
unique formalism, there is no need to convert raw parsing information into the
application domain. In our approach, the application domain is the parser itself.
Secondly, Smart Sight does not have the notion of a dynamic service selection,
therefore interactions among components are not �exible and cannot easily be
recon�gured.

The Personal Satellite Assistant (PSA)[15] project explores human-robot
interaction by creating an autonomous robot designed to assist astronauts in
mission related tasks. In addition to the robotic challenges, user interaction
with PSA has to be hands-free (voice based) and provide dialog management.
A functioning dialog manager has been implemented speci�cally for the PSA
project, which could not be reused as a generic tool for build intelligent assistant
software.

The Smart Personal Assistant[85] application is a system that provides as-
sistance for o�ce-like applications over a pocket computer. It features a speech
and point-click interface to access both calendar and email systems. This work
is relevant to our approach in at least two ways. First, it is built around a
service-based architecture, where components are dynamically orchestrated by
a central manager. Secondly, the manager consists of a BDI engine where user
dialog is modeled as a collection of plans. The application nevertheless di�ers
from our vision as being a collection components designed in di�erent program-
ming languages, therefore di�cult to integrate and debug.

23

2.4 Conclusion

This chapter has presented relevant work in the domain of intelligent assistant
software design. Most research e�orts presented have inspired our vision to
create a uni�ed framework for building intelligent assistants. Each project is
focusing on a speci�c aspect of the problem: modeling intelligent behaviors,
provide high-level natural user interfaces or dynamically select and invoke re-
sources. The review also shows that complete end-to-end intelligent assistant
applications have been designed, implemented and validated, demonstrating the
tremendous potential of this most needed type of software systems. The design
and implementation of these prototypes and products require signi�cant soft-
ware integration and specialist collaboration. Our goal is to lower the bar to
build intelligent assistants by encapsulating and fusing the best of AI techniques
into a uni�ed toolset to create innovative techniques and ideas to implement
user-centric software.

24

Chapter 3

Theory of Operation

This chapter presents the high-level design and motivations behind our approach
to provide a uni�ed framework for building intelligent assistant applications.
First, it introduces the concept of intelligent assistant as de�ned by the litera-
ture. Then, it presents relevant AI theories and how they in�uenced our work.
Based on this review, it describes our view on the de�nition of intelligent assis-
tants and how it is cast into a uni�ed framework solution. Finally, it introduces
the Active framework, our software instantiation of this vision.

3.1 How intelligent assistants work

This section presents our de�nition of the concept of intelligent assistant. First,
we present the environment that justi�es the use of intelligent assistants and
describe a simple concrete example. We then provide our description of what
an intelligent assistant should be and compare it with other de�nitions found in
the literature.

3.1.1 Motivation and problem space

Computer systems keep growing in complexity, processing power and inter-
connectivity. To leverage this rich environment and better assist users, a new
type of intelligent assistant software is necessary. Intelligent assistants are soft-
ware systems that can communicate with humans, understand the situation by
mapping input senses into a model, act to produce useful behavior (i.e retriev-
ing relevant information), and then interact through an appropriate rendering
of communicative content.

As an example, let us imagine a situation where a visitor is looking for
information about a city. Instead of navigating through multiple web sites, or
struggling with a cellphone embedded browser, it would be easier to simply
send a message (email or short message) to a personal assistant asking, in plain
English, ��nd me a Chinese restaurant tonight in San Francisco�. The answer
would then come back, as a text message, with a list of restaurants, or as a
question such as �which area of San Francisco?�. Through a dialog-based thread
of asynchronous messages, the assistant helps our visitor to focus on the purpose
of the visit by delegating tedious tasks to an intelligent automated system.

25

The goal is to delegate tasks to computers instead of using them as tools in a
direct manipulation fashion, allowing users to deal with a large amount of infor-
mation and focus on important activities. There is still a �erce debate about the
relevance of this approach as the future of all computer human interactions[72].
Critics argue that intelligent assistants can be bring confusion, be too intrusive,
or prevent users from controlling all aspects of their computer-based activities.
In many cases direct manipulation is still the most e�ective way to control a
software system, therefore adding a caution that intelligent assistance needs to
be carefully planned. Our goal is to focus on application domains where intelli-
gent assistants are at the core of user-centric applications and not deployed as
add-ons to an existing direct manipulation-based system (e.g., the highly con-
troversial Microsoft's word paper clip). We have identi�ed speci�c application
domains where assistants are the most relevant, if not necessary.

• Intelligent homes. Intelligent homes are a natural application �eld for
pervasive computing applications. Instrumented spaces are aware of local
user activities and intentions to provide relevant contextual help when
requested. Literature shows that this �eld goes beyond pure entertainment
for luxurious home-of-tomorrow projects, but also provides realistic and
most needed assistance to senior citizens, physically challenged people and
patients staying at home[73, 33].

• Information and task workload. As described in her seminal paper, Maes[49]
describes the raison d'être of intelligent assistant applications as their abil-
ity to help us manage the information overload brought by the complexity
of our daily tasks. It includes simple tasks such as automatic email �ltering
and classi�cation to more complex plans such as scheduling meetings or
organizing a trip. An emerging aspect of information retrieval where intel-
ligent assistants can provide support is search engine querying. Broder[6]
shows that least 23.8% of search queries are transactional. A transactional
query carries the user intention to perform complex web-mediated activ-
ity, such as organizing an event, purchasing an item or booking a trip.
Providing the ability to express a sequence of queries in plain English
in a dialog-based fashion to extract complex information from the web,
users can delegate low-level tedious browsing tasks to focus on the overall
activity at a higher level.

• Challenging environments. In some domains, the complexity of tasks could
not be achieved by humans without assistance. For instance, pilots could
not �y modern airplanes without active automatic electronic and mechan-
ical assistance from the aircraft. Taken at the extreme, the domain of air
combat led to highly sophisticated pieces of software providing contextual
and relevant support to pilots[3]. The medical �eld is another example,
where computers are now part of the standard equipment available in
modern surgery rooms. When performing highly complex interventions,
robotic and computer-based systems extend the normal capabilities of sur-
geons. They o�er higher accuracy, better view of the operating �eld and
the ability to perform complex moves such as cutting and stitching in areas
di�cult to reach. In the context of this work, we will explore if assistant-
like applications could mediate interactions between surgeons and to the
operating room back-end systems.

26

3.1.2 Intelligent assistants characteristics

This section reviews relevant work in the �eld and extracts the main character-
istics of intelligent assistants.

First, let us clarify some terms used in the �eld. The literature uses di�erent
expressions such as : personal assistant, interface agent, intelligent interface
agent or intelligent assistant almost interchangeably. In this document, we will
use the term intelligent assistant or simply assistant.

At the highest level, relevant literature [49, 53, 48] agrees that intelligent
assistants are software systems to whom some tasks can be delegated so that
users can reduce their workload and focus on the most relevant aspects of their
activities to gain in productivity.

More speci�cally, in his review of the �eld, Middleton [53] de�nes interface
agents as the �eld where AI meets with HCI . He de�nes the domain along three
axis:

• Knowing the user. Knowing the user starts by extracting goals and in-
tentions from any perceived input modalities. The assistant also adapts
its behavior and plans to changing goals. Finally, it learns about user
preferences to provide the most appropriate response.

• Interacting with the user. Interaction with the user unfolds on three as-
pects. First, the granularity of delegation, where the assistant provides
help at the right level. Secondly, the type for interaction has to be carefully
designed. This is where modalities (i.e. speech, mouse/keyboard, vision,
text messages) and the metaphor (i.e dialog box, desktop, animated char-
acter) are de�ned. Finally, the usability of the system needs to be adapted
to the level of expertise of targeted users.

• Competence in helping the user. The assistant uses strategies to, some-
times autonomously, select and performs tasks on behalf of the user.

The de�nition provided by Lieberman and Selker[48] is slightly di�erent. They
start from the three-word term intelligent interface agent to de�ne each word
separately. Intelligent refers to any systems that exhibit some level of human-
like intelligence, interface describes any medium used to communicate with
a person and agent refers to a system that provides assistance. In addition,
intelligent interface agents exhibit the following characteristics:

• Initiative: Unlike direct-manipulation interfaces, assistants take initiatives
based on their observations of users and their environment.

• Roles: An assistant is a system that actually undertakes tasks on behalf
of the user. An adviser on the other hand, would not perform any action
but advise the user on what should be done.

• Personalization: User interfaces provided by intelligent interface agents
should be dynamic enough to adapt on di�erent users.

• User Modeling : Intelligent assistants should have a model the tasks and
the application domain in which they provide help.

• Trust : The agent should provide a consistent, error-free behavior for users
to build trust and actually use it.

27

• Feedback : The agent should always clearly explain its actions.

• Inscrutability : The agent should learn over time from its interactions to
provide better, more appropriate and more e�ective support.

• Anthropomorphization: A metaphor often used as the user interface of as-
sistant agents is based on human-like animated characters. Studies have
not clearly shown[9] whether anthropomorphization provides better com-
munication with users.

• Cognitive Style: Di�cult notion to measure, it de�nes how appropriate
is the help provided by the assistant. It is similar to the granularity of
delegation introduces earlier, where agents have to adapt the amount of
help and suggestions they produce to avoid being too intrusive and defeat
their very purpose.

3.1.3 Relevant theories and approaches

In addition to the �eld of intelligent assistants, numerous ideas and theories
have inspired our work and shaped the design of the Active framework. This
section summarizes them and outlines how they contributed to our solution.

Cognitive architectures

The �eld of cognitive architectures is a fertile ground where many of the AI
techniques used in intelligent assistant design have originated. Cognitive archi-
tectures aim at modeling human-like reasoning based on knowledge represen-
tation. Most cognitive architectures [45, 63, 2, 20], tools, and applications [5]
rely on production rules to encode reasoning. A non-procedural event-based
programming model is suitable the �eld intelligent assistants, where inputs to
trigger actions not only come from users but also as asynchronous events sensed
within the environment where the agent is deployed.

Knowledge representation

In the �eld of computer science, and AI in particular, knowledge representation
consists of modeling, storing and exposing knowledge about a domain. The
knowledge store can then be use by processing components to learn (by adding
information to the knowledge store) and reason. Ontologies are a popular and
powerful tool to represent knowledge about a domain. An ontology is made out
of concepts augmented by attributes connected by relationships to describe data
models.

Agent technologies

Marvin Minsky's Society of Minds[55] has in�uenced directions in AI research
for more than twenty-�ve years. The theory is built on the idea that com-
munities of simple very specialized agents work together to create a collective
high-level intelligent behavior. Agents are simple processing components that
can communicate and be connected to create larger, more complex systems.
Based on this architecture, Minsky built a theory, explaining how to model
systems for most AI �elds. Active has been in�uenced by this theory at three

28

levels, ranging from the very core of the Active system, to its high level design
model.

Neuroscience inspired approaches

Neuroscience discoveries about our brain are used to model intelligence. Base
on neocortex research, Hawkins[32] developed the compelling hierarchical tem-
poral memory (HTM) theory. He claims that our brain has a single unique
algorithm which consists of recognizing patterns that repeat over time. Pattern
recognition modules are independent and connected in an side down tree-like
network. Bottom leaves produce signals about patterns to higher level nodes,
also trying to detect patterns. As the information �ows up the tree, it be-
comes more abstract to represent high level invariant concepts. Using memory,
a feedback mechanism �owing down from tree top, informs and tunes pattern
matchers about what signal should be expected next. This provides an inte-
grated model of sensing, interpretation, anticipation, and action, attributes we
feel are essential for an intelligent assistant architecture.

Active Ontologies

The fundamental tool of our research, Active Ontologies, have been inspired and
inherited from all the projects mentioned so far.

First, the fusion of production rule engines and ontologies to represent an
application domain is the foundation of Active Ontologies. An Active Ontology
is an ontology enhanced with processing elements. Whereas a conventional on-
tology is a data structure, de�ned as a formal representation for domain knowl-
edge, an Active Ontology is a processing formalism where distinct processing
elements are arranged according to ontology notions; it is an execution environ-
ment. Concepts of an Active Ontology are augmented with production rules,
and its relationships become communication channels. This approach allows
AI developers to model an application domain and directly apply any required
processing in a seamless and uni�ed environment. The following chapters of
this document explain how Active Ontologies are used as the unique program-
ming technique to model and implement major components required to build
intelligent assistants.

Active-based applications also leverage agent techniques at three levels (see
�gure 3.1). Active-based systems consist of a core (running a collection of Active
Ontologies) and a community of heterogeneous loosely coupled services. Each
component of this service oriented architecture can be considered as an agent,
part of a larger community. At a second level, the Active server runs one or more
specialized Active Ontologies, dedicated to speci�c tasks. For instance, one may
be in charge of language processing, one executing complex processes while a
third one dynamically orchestrates services. Similarly, at this level of design, one
can consider each Active Ontology as an agent, working within a community of
siblings to provide a collective behavior. Finally, at the very core of the Active
system, Active Ontologies are enhanced ontologies made out of concepts and
relationships. Concepts are extended with processing and relationships used as
communication channels. In this context, each concept can be thought as a very
specialized agent, that communicates with its counterparts to form a community
able to collaborate on complex complex tasks.

29

Active Server Active Ontology Active Application

Active Server

S1

S3

S2

S4 Concept

Active Ontology
Active Ontology

Concept Concept Active Ontology

Concept Concept

Figure 3.1: Agent-based in�uence

Finally, programming using Active Ontologies bears similarities with neuro-
science inspired techniques. For instance, the technique developed to perform
language processing with Active Ontologies (see section 5.2.3 on page 71) uses an
tree-like ontological structure to represent the domain of an application. Each
leaf is instrumented with specialized rules to analyze incoming words to give
them a potential semantic value. For instance, a node is charge of detecting
cities, would react to the word Paris. As nodes react, they use ontology rela-
tionships to communicate their �ndings to the parents for further processing. At
the ontology de�nition level, a city node belongs to an address. As processing
takes place, the city node reports its �ndings and semantic claims to the address
node for further processing. This approach is aligned with research related to
brain studies.

This combination of �avors gives Active Ontologies a unique feature set and
large potential to implement AI-based systems.

3.1.4 Our intelligent assistant de�nition

Based on our background, observations, and the literature reviewed in this chap-
ter, we present and contrast our attempt to de�ne an intelligent assistant. Al-
though similar in its overall characteristics, our view on intelligent agents is less
abstract and more practical than the work reviewed in previous paragraphs. As
shown by McTear[52] and Höök[37], a practical approach when building intelli-
gent interfaces is crucial. Our more pragmatic approach takes implementation
and software design into consideration from its root by articulating its de�nition
around an intelligent agent control loop (see �gure 3.2) . A control loop design
allows an intelligent assistant to constantly check its actions against its envi-
ronment to rapidly adapt its behavior to new sensed signals. As a consequence,
when signals are captured from the environment, the intelligent assistant in-
terprets them, changes the course of its actions and, in turn, can modify its
environment.

The main characteristics the intelligent agent control loop can be decom-
posed into four entities. The intelligent assistant, is able to observe, understand,
learn and act within the environment in which it is deployed.

30

Understand

Observe

Vision Listen

Sense User Interface

Messages

Act

Effectuate

Communicate

Interpret

Anticipate

Plan action

Resolve

Remember Learn

Intelligent Assistant

Environment

Figure 3.2: Intelligent Assistant Control Loop

Sense and observe

To provide contextual relevant support, the intelligent assistant needs to observe
to sense its environment. We consider a global observation that not only involves
listening to users, but also capture any signal (e.g. ambient temperature) that
brings useful information. Intelligent assistants should support multimodal fu-
sion of input signals. For instance, a user can issue a vocal command �Show me
a photo of this area� while pointing somewhere on a map. Intelligent assistant
systems should easily support heterogeneous inputs signal ranging from typed
text in a conventional user interface, utterances produced by speech or gesture
recognizers to asynchronous messages such as emails or instant messages.

Understand

Once signals have been sensed, the system has to understand their meaning.
Understanding is at the core of intelligent assistants, this stage can be modeled
into several sub tasks:

• Interpretation. The interpretation step processes independent input sig-
nals to produce a valid structure used for processing. This is typically the
where language processing and multimodal fusion take place.

• Resolution. Once raw commands have been generated at the interpreta-
tion level, they need to be resolved. Resolution involves disambiguation
and reference resolution. Users can issue ambiguous commands such as
��nd Chinese food in Davis�, where there are multiple cities named Davis
in the USA, and multiple provider types (e.g. restaurants, markets) that

31

sell Chinese food. The �rst step is to have mechanisms in place to detect
ambiguities. Once an ambiguity has been found, it can either be solved
automatically using user preferences (e.g., which Davis is closest to where
the user lives), heuristics (e.g. choose the Davis with the largest popula-
tion), or the context history (e.g. which one makes the most sense given
what the user has just been talking about); or manually, by asking the
user to explicitly specify which Davis to consider. Reference resolution
may involve multimodal or context-based commands � if a user issues a
multimodal command such as �show me a photo of this� while pointing on
a map, the value �this� should be resolved with the object indicated by
the gesture.

• Validation. At the validation stage, the assistant ensures that it has
enough coherent information to undertake tasks and actions on behalf
of the user. If not, a similar approach the resolution step is deployed.
Using contextual information, the assistant can try to validate the infor-
mation automatically. For instance, if a zip code is required for further
processing, a database look up may be used to �nd the zip code of Davis,
California. If no automatic solution is found, and the missing information
is required to make forward progress on the task, the assistant will loop
back to the user asking for more detailed information.

• Learning. Intelligent assistants need to provide a notion a learning. Learn-
ing can be used to infer user preferences out of their activities and answers.
For instance, if a mobile user is constantly asking about the closest Italian
restaurant, the Italian attribute may become a default option when he or
she requests for places to eat.

• Anticipation. Based on their knowledge, either learned or a priori known,
intelligent assistants need to anticipate actions. Anticipation is used to
help users in their activities by anticipating options. For instance, let us
consider a mobile user requesting the status of a �ight. If the �ight is
delayed, the assistant can automatically anticipate a stay over and start
looking for hotels. Anticipation can not only be a comfort and guide for
the user, but is also helpful for performance, using speculative retrieval
and caching of results that the user may want next.

• Action planning. Once user requests have been sensed, interpreted, re-
solved and validated, the assistant has enough information to actually
launch actions. As assistant should have the processing capabilities to
reason about and execute both simple action responses in reaction to the
current situation, as well as manage complex automation �ows based on
long lasting plans and goals.

Actions

As a result of task execution, the intelligent assistant will act on its environment.
Actions may involve communication with users to deliver results, to ask for
more information or to communicate warning in anticipation to potential issues.
Actions may also involve changing the world through a variety of e�ectors,
ranging from manipulating physical devices, controlling software applications,

32

Service
Service

Service

Service
Service

Core Runtime

Understand

Observe Act

Dynamic Service Management

Service

Figure 3.3: Intelligent Assistant Software Architecture

or tasking remote services. For instance, an assistant providing help at home
could dim lights, draw curtains or adjust ambient temperature. An assistant
providing support in the work area, could be the intelligent interface between
human users and their information sources such as email, web sites, and �les.

To provide the �exibility required by dynamic environments, actions under-
taken by intelligent assistants are preformed through service delegation. Dele-
gation consists of selecting, at runtime, the type of service and speci�c service
provider to use. Selection of service is performed by a broker, that bases its
decision on information coming from the current context, user preferences or
advisers. For instance, a user could issue the following command �Send this
message to Bob�. Assuming the message is known, the broker will select among
noti�cation services which is the most appropriate to deliver the message. Based
on service availability, priority and type of the message, or even the location of
the Bob, the broker will pick the best modality (i.e. email, instant message,
voice mail) to inform Bob.

Having practical intelligent assistant software design in mind from the be-
ginning, e�ective delegation calls for a Service Oriented Architecture (SOA)[7]
software approach. This is especially true in the domain of pervasive com-
puting where service-oriented frameworks at the core of many research e�orts
[71, 25, 24, 68]. We therefore envision intelligent assistant applications as a core
running one or more Active Ontologies, processing information coming from
their environment through sensor services and acting by orchestrating a set of
actor services.

33

The environment

The last component of the intelligent control loop is the Environment. This is
the domain in which the intelligent application is deployed. The main actors
of the environment are human users to whom the assistant provides help. In
addition, the environment is thought as a larger space, where non user-created
information is collected to provide the assistant with a full picture its surround-
ings. Intelligent spaces, at the core of pervasive computing, are instrumented
areas with sensors and computing power. Computing moves away from the
console-keyboard-mouse to become invisible, seamlessly integrated into our en-
vironment.

3.2 A uni�ed integrated framework

Based on the work presented so far in this chapter, this section presents the
motivation, decisions and advantages of our vision, which consists of providing
a uni�ed toolkit and associated techniques to build intelligent assistant applica-
tions. It exposes the main characteristics of a uni�ed framework to build such
software systems and shows how the Active framework �ts into this model as is
actual software implementation.

3.2.1 Motivation

There are multiple reasons and advantages to use a uni�ed integrated framework
to build intelligent assistants.

• Experiment with new approaches. A uni�ed toolkit can be used as a test-
bed to experiment with innovative approaches to solve AI problems. For
instance, this document presents a new approach to language processing
that uni�es, in one single application, the de�nition of the application and
the processing of incoming utterances (see section 5.2.3 on page 71).

• Horizontal design. Many intelligent assistant systems are built around
powerful processing cores (reasoning, learning, scheduling and planning)
connected with separate components in charge user interaction (language
processing, dialog management, user interface rendering). It is often a
signi�cant challenge to perform the integration and mapping of a user-
model of a problem domain to the background reasoning components and
data structures. By implementing most of these components in a seamless
and uni�ed framework, information and domain de�nitions can be shared
across all tiers of the application. For instance, we demonstrate later in
this document how data structures de�ned at the language processing level
can be directly be used for service de�nition, registration and discovery.

In addition to design improvements, practical advantages arise from this ap-
proach:

• Smaller teams. Existing complex AI-based systems aimed at assisting
users[5] are very advanced and powerful, but require large teams of spe-
cialists. Using a uni�ed toolkit along with a set of methodologies, a small

34

team (ultimately a single software developer) could rapidly design an in-
telligent assistant application by applying many of the best AI techniques
into their project. Programmers could pick among existing Active-based
techniques to provide the required components for their application. For
instance, we present in section 5.2 on page 64 two language processing
methods implemented with Active.

• Share, create and compare AI techniques. A uni�ed toolkit allows pro-
grammers to encapsulate and share existing and original techniques more
easily. Researchers can use o�-the-shelf components to mix them with
their original research. Sharing of compatible components fosters inno-
vation. In addition, components based on well known techniques can be
directly swapped in and out to be compared in a unique test harness with
original approaches.

• Easier to debug, test and deploy. A uni�ed framework can be used as a
testbed to design, implement, evaluate and compare new intelligent as-
sistant systems. A uni�ed architecture leads to controlled and easier to
debug applications and prototypes. Tracking events and data �ow across
components running within a seamless framework allows developers to
quickly analyze problems and isolate functional problems. Finally, eas-
ier and more robust applications can potentially lead to productized and
supported AI-based systems.

3.2.2 The Active framework

This section provides a high level introduction to the Active framework, our im-
plementation of a uni�ed toolkit to ease the development of intelligent assistant
applications. Pointers are given to chapters and sections where more in-depth
descriptions of Active components are provided. The Active framework consists
of a software toolkit and a set of methods describing how to implement AI-based
components.

Software toolkit

The software toolkit provides development, test and runtime tools. Development
tools consist of an IDE, the Active Editor, where programmers can easily design,
implement and test their components. The IDE is articulated around a graphical
drawing area, where developers can model Active Ontologies by drag-and-drop
creation of concepts and relationships. Specialized integrated editors are used to
write and associate processing elements over the ontology de�nition. A runtime
server, the Active Server, hosts and runs Active Ontologies. Active Ontologies
are deployed on the server that manages the execution, maintains their state
and handles all communications with the environment. Finally, a management
console allows Active developers to test values and debug running deployed
Active Ontologies.

The software suite is open and extensible. An extensibility mechanism allows
researchers and programmers to collaborate by encapsulating AI-techniques into
standardized plugins. Both the Active Editor and the Active server provide
extension mechanisms for developers to create plugins.

35

The implementation of the Active software described in section 4.3 and the
Active User's guide provided in annex.

Techniques and methods

In addition to the software toolkit, the Active framework provides a set of tech-
niques to provide AI-based components. All of these methods are implemented
as one or more Active Ontologies and server extensions. We have identi�ed
and implemented the following modules to be used as components of intelligent
assistant applications.

• Natural language processing. Language processing consists of gathering
and analyzing user signals over time to create a command, or a plan to
be executed by the system. Gathering of user inputs needs to support
di�erent modalities, that can be fused to create user command. Language
processing also provides disambiguation and validation techniques. Two
Active-based approaches implementing language processing are presented
in section 5.2 on page 64.

• Process modeling. Once the language processing stage has generated a
command to be executed, the assistant will launch a sequence of actions
to complete the task expressed by the user. Process models can be repre-
sented as �nite state machines consisting of nodes and transitions. Events
trigger the transition from one node to another. Events can be generated
by the process itself (timeout, conditional branches or event generation)
or externally posted from remote applications. Each node contains an
action, executed when the state of the node becomes active. Section 5.4
on page 109 presents how process modeling and execution can be imple-
mented with Active.

• Services management. As previously explained, intelligent assistant ap-
plications bene�t from being built around communities of loosely coupled
services. This design allows for ease of integration, pervasive comput-
ing and dynamic service selection. Sensor components, such as speech
recognizers or vision systems, are likely to be integrated into intelligent
assistants. Exposing sensors as loosely coupled services provides �exi-
bility, recon�guration and standardized integration. In addition, mobile
users may temporarily loose the ability to connect with some services,
replace them with their equivalents depending on their location. In ad-
dition to these practical advantages, service-based architectures allow for
delegation, where service providers can be picked on the �y, based on the
current context. Section 5.3 on page 96 presents how Active is used to
register, discover, select and invoke loosely coupled services.

• Context management. Context management is horizontal, all previously
mentioned items require context management. A language-driven dia-
log consists of multiple utterances, building a conversational context over
time. For instance, one can say : ��nd movies in San Francisco tonight�
and then, in a subsequent utterance express : �get comedies only�. The
context keeps contextual information, such as location and time, across
utterances. Process execution also requires context, where branches and

36

action will be triggered based on the context. Finally, dynamic service
selection is also based on the current application context.

Software design

As previously described, intelligent assistant applications should be designed
around service oriented architectures. Figure 3.4 shows the software application
design to build Active-powered applications. An Active Server runs one or
more Active Ontologies, each implementing a critical component of the system
(language processing, service management or process modeling). A community
of loosely coupled services provide sensors and actors to connect the intelligent
assistant to its environment. Active developers use the Active Editor to write
and deploy Active Ontologies onto the Active Server. Finally, the Active Console
provides monitoring and runtime management of the system.

Service
Service

Service

Service
Service Service

Active Server

Active Ontology
Active Ontology

Active Ontology
Active Ontology

Active Editor Active Console

Deploy / Test

Extensions

Monitor / Control

Figure 3.4: Active-based Application Software Architecture

37

3.3 Conclusion

In this chapter we presented the background and the motivations behind our vi-
sion. First, based on our experience, current research and technical constraints,
we have provided a de�nition of intelligent assistant systems by enumerating a
list of characteristics and discussing our software architecture. We have then
shown that our work has been inspired by research ranging from fundamental
work such as Marvin Minsky's Society of Minds[55] to more recent approaches,
such as the hierarchical temporal memory [32] theory proposed by Je� Hawkins.
Having implementation and software architecture in mind, we have also reviewed
more pragmatic approaches such as service oriented architectures and pervasive
computing frameworks.

We have then described our proposition to create a uni�ed framework to
build intelligent assistants by exposing its main characteristics and advantages.
Advantages includes lowering the bar to build AI-based systems, allowing smaller
teams to work on intelligent assistants, providing a testbed to researcher for in-
novation, comparison and collaboration. Additional practical advantages are
easier to implement, test and debug applications, with better potential for com-
mercialization.

Finally, as an implementation of this vision, the Active framework has been
introduced. The Active framework consists of a software suite including an IDE,
a runtime engine and a management console. Both the IDE and the runtime en-
gine provide SDK's for extensibility, encapsulation and sharing of reusable com-
ponents. Active also consists of a repertoire of methods to implement AI-based
modules required for intelligent assistant applications. The chapter enumerates
a list of such modules providing dialog-based language processing, dynamic ser-
vices registration and selection, process modeling and execution and context
management.

The following chapters present the Active framework in more detail, starting
from its basic characteristics and then describing existing methodologies and
prototypes.

38

Chapter 4

Active Kernel

This chapter introduces the Active framework. It starts by presenting Active
Ontologies, the foundation of our platform. Then, a detailed description of
the Active processing rule engine is given, supported by a series of examples.
Finally, a description of the current Active software suite is included.

4.1 Active Ontologies

Active Ontologies unify application domain modeling and processing. Active
Ontologies are based on conventional ontologies and can therefore be used to
model knowledge about an application domain. Active Ontologies also features
processing elements so that a layer of processing can be added over the de�nition.
Active Ontologies are both a data structure and an execution environment.

actor genre rating

movie

Figure 4.1: Simple Ontology

As previously introduced, an Active Ontology is an extension of a conven-
tional ontology. Therefore, Active Ontologies inherits the basic features of clas-
sic ontologies based on concepts and relationships to represent some knowledge
about a domain. In an Active Ontology, concepts have a unique name and can
be connected with relationships. Relationships are oriented connectors that re-
late two concepts, a source and a destination. Each relationship has a type and
a set of attributes.

In the example shown in �gure 4.1, a simple ontology represents a movie as
consisting of a set of actors, a genre and a rating. To model it, four concepts
are used: movie, actor, genre and rating. To express that a movie consists

39

of actors, has a genre and a rating, three relationships of type is member of
connect the movie concept with its constituents.

Numerous types of relationships will be introduced in this document, and
each type comes with its own set of attributes. Relationship attributes are
typed name/value pairs used to specify characteristics of a relationship. For
instance, the relationship type is member of has a Boolean attribute named is
single to specify the cardinality of the relationship. In our example, a movie has
multiple actors. Therefore, the is single attribute of the relationship connecting
the movie and actor concepts is set to false.

4.2 Active processing

This section presents how processing is implemented in the context of Active
Ontologies. In addition to concepts and relationships, Active Ontologies contain
processing elements distributed over their concepts. Processing is modeled with
rules, whose conditions are evaluated against a set of facts, kept in a fact store.

At the core of Active is a specialized production rule engine, where data
and events stored in a fact store are manipulated by rules written in a target
language (currently Java or Javascript) augmented by a light-layer of �rst-order
logic to perform uni�cation operations. When the contents of the fact store
changes, an evaluation cycle (see section 4.2.4 on page 44) is triggered and
conditions evaluated. When a rule condition is validated, the associated action
is executed. Actions can create events, insert new data (facts) or perform any
processing expressed in the target action language.

Concept
Rule Set

Rule
Rule

Rule

Concept
Rule Set

Rule
Rule

Rule

Concept
Rule Set

Rule
Rule

Rule

Concept
Rule Set

Rule
Rule

Rule

Fact Store
Active Ontology

Figure 4.2: Active Ontology Components

40

4.2.1 Facts

The fundamental data structure in Active is the fact. When building an Active
based application, facts are used to represent the domain de�nition, to store the
current execution status and to communicate data and events among processing
elements. Facts have a life cycle; they are created, asserted and deleted. The life
cycle of each individual fact is independent and is de�ned by Active programmers
to create time constrained behaviors.

Inspired by �rst-order logic predicates, there are four types of facts.

• Simple facts: Simple facts are atomic constant values.
Examples : 1, a, 'john doe', ABxx

• Complex facts: Complex facts are named predicate with one or more
arguments of the form name(t1, ..., tn). Arguments may in turn be any
fact.
Examples: person(john, doe), person($name, doe), position(x(10), y(10))

• List facts: List facts are bracket delimited and comma separated non-
ordered collections (sets) of facts.
Example: [1, a, position(10,10)], [a,b,c], [1, $D, c]

• Variables: Variable identi�ers starts with a dollar sign ($). Anonymous
variables, or wildcards, are represented as a single dollar sign ($).
Examples: $person, $priority, $X, $

4.2.2 Uni�cation

This section introduces the concept of uni�cation, the fundamental mechanism
through which Active rule conditions are evaluated. Uni�cation is essentially a
Boolean operation to compare two facts. If two facts unify, they are considered
as equivalents. To explain the principles of uni�cation, we start from the simple
cases and gradually increase the complexity of facts we consider.

Simple facts Uni�cation of simple facts is straightforward, the two facts have
to be similar. (see table 4.1)

Fact 1 Fact 2 Unify?

a a yes
a b no
'a car' 'a car' yes
'a car' 'a train' no

Table 4.1: Simple Fact Uni�cation

Complex facts Uni�cation of complex facts (structures made out of a functor
and a collection of children facts) is more complicated. For the uni�cation to
succeed, both facts have to be complex facts, their functors (names) have to be
equivalent, they must have the same number of children, and �nally all children
have to unify in the correct order. The process of complex fact uni�cation can

41

be seen as a parallel and recursive tree traversal, performed simultaneously on
both inputs. At any given point, the Active fact of the traversal from the �rst
fact has to unify with its counter part from the second fact. If the traversal
completes and all visited facts have uni�ed, the uni�cation succeeds. If any of
the traversed facts fail to unify, the process of structure uni�cation fails. Table
4.2 provides a list of examples.

Fact 1 Fact 2 Unify?

person(bob) person(bob) yes
person(bob) person(john) no
person(bob) employee(bob) no
person(john, doe) person(john, doe) yes
person(john, doe) person(john, wayne) no
person(name(john, doe), ssn(1234)) person(name(john, doe), ssn(1234)) yes
person(name(john, doe), ssn(1234)) person(name(john, doe), ssn(4567)) no

Table 4.2: Complex Fact Uni�cation

List facts Uni�cation of list facts can be performed in two modes: strict or
partially strict. The strict list uni�cation imposes both lists to have the same
number of elements and enforces that all of their elements must unify in order.
The strict commutative list uni�cation does not impose the order of elements.
It nevertheless imposes that both lists must have the same number of elements
and each element of the �rst list must unify with one, and only one, element of
the second list. Active uses the least strict uni�cation mechanism is the partially
commutative list uni�cation. In this case, lists do not have to contain the same
number of elements. The uni�cation succeeds if all elements of the shortest list
unify with at least one element of the longest list. The order does not matter
and each element of the long list can be used only once as a "match" for an
element of the short list. Table 4.3 show list fact uni�cation examples.

Fact 1 Fact 2 Strict Partially Commutative

[a] [a] yes yes
[a] [b] no no
[a,b] [a,b] yes yes
[a] [a,b] no yes
[a(1),b(2)] [a(1),b(2)] yes yes

Table 4.3: List Fact Uni�cation

Uni�cation with variables As mentioned above, Active facts can contain
variables. Variables play an important role in the process of uni�cation, where
they can be seen as wild cards that always unify with their counterparts. When
a variable uni�es with a fact, it is instantiated with the matching fact and, for
the rest of the uni�cation process, is not considered as a variable anymore but as

42

a known fact. Note that anonymous variables are never instantiated and work
simply as wild cards.

Fact 1 Fact 2 Unify Instantiations

a $v1 yes v1=a

a $ yes -

a(b) a($v1) yes v1=b

a(b,c) a($v1, c) yes v1=b

a(b,c) a($v1,d) no -

[name(john), age(10)] [name($v1), age($v2)] yes v1=john, v2=10

[name(john), age(10)] [name($v1)] yes v1=john

[name(john), age(10)] [name($v1), age($v1)] no -

Table 4.4: Uni�cation with Variables

Using variables, the uni�cation process is more than a simple Boolean op-
eration to compare two facts, it is a rich pattern matching mechanism through
which variables can be instantiated and complex conditions expressed. This
mechanism is fundamental to the Active framework. For instance, let us con-
sider an example where facts are used to store employees of a company using
the following structure:

employee($�rstname, $lastname, $title, $employee_id)

A uni�cation based query for retrieve all managers would be :

employee($�rstname, $lastname, manager, $employee_id)

The uni�cation mechanism presented in this section is one of the basic concepts
of Active. It is used by the fact store of Active to expose a query (read) interface
and Active rules, whose conditions are based on uni�cation.

4.2.3 Fact store

This section introduces the Active fact store (or store), and presents a subset
of the Active programming API (or Active API) through a set of simple ex-
amples. Fact stores are the dynamic memory of Active, they host and manage
facts. Hosting facts means o�ering a set of functions to persist (write) facts. It
also means exposing query (read) functions so that stored facts can easily be
retrieved. This section introduces a subset of the fact store API. As we cover
Active in more details in this chapter, we will introduce more functions of the
Active API.

Read, Write and Modify API

In this section, we introduce four basic methods of the Active API1:

• void Store.writeFact(Fact factToWrite) : This method takes a simple fact and
asserts it into the fact store.

1The Active API is described in a Java-like pseudo code. Detailed API de�nitions depend
on the target language selected. (Java or Javascript)

43

• Fact[] Store.readFacts(Fact factPattern): Uses the uni�cation pattern to re-
trieve all facts that match a given pattern.

• void Store.removeFacts(Fact factPattern) : Uses uni�cation to remove all facts
present in the fact store that unify with the pattern provided.

• void Store.overwriteFact(Fact factToWrite, Fact factPattern) : This method
is a combination of removeFacts and writeFact. It will �rst remove
all facts that match the given pattern, then write the provided fact. It
is the equivalent to the sequential execution of : Store.removeFacts(Fact
factPattern) and Store.writeFact(Fact factToWrite)

• void Store.scheduleFact(Fact factToWrite, Date date) : This methods takes
a simple fact and schedules it for assertion. The fact store persists the
incoming fact but keeps it invisible until the speci�ed date. This basic
feature allows Active programmers to model timeouts or any other time-
based behavior.

Examples

Lets us consider the example introduced on section 4.2.2. To create a small
repository of employees, our store fact can be populated as follows :

Store.writeFact(employee(john, doe, accountant, e123))
Store.writeFact(employee(jane, doe, manager, e122))
Store.writeFact(employee(alan, smith, accountant, e100))
Store.writeFact(employee(robert, martin, ceo, e145))
Store.writeFact(employee(mary, jones, receptionist, e235))
Store.writeFact(employee(john, smith, manager, e153)

To retrieve all managers, one would use:

Fact[] results = Store.readFacts(employee($, $, manager, $))

To delete all managers from the data base:

Store.removeFacts(employee($, $, manager, $))

4.2.4 Rule evaluation cycle

As previously described, an Active Ontology consists of interconnected pro-
cessing elements called concepts, graphically arranged to represent the domain
objects, events, actions, and processes that make up an application. The logic of
an Active application is represented by rulesets attached to concepts. Rulesets
are collections of rules where each rule consists of a condition and an action.
During an evaluation cycle, condition rules are evaluated and for each condition
that evaluates positively, the associated action is triggered : the rule �res.

The fact store of an Active Ontology is regularly checked for changes since
the last cycle. As long as the content of the store is unchanged, Active is not
performing any action. If any modi�cation of the fact store attached to an
Active Ontology is detected, an evaluation cycle is triggered. In an evaluation
cycle, rule conditions are evaluated against the content of the store and, if the
condition is veri�ed the rule �res. Figure 4.3 summarizes the process where each
evaluation cycle is a three-step process. A pre-processing step checks if the fact

44

cycle n-1 cycle n cycle n+1

P
re-processing

Post-processing

P
re-processing

Post-processing

P
re-processing

Post-processing

R
ules

E
valuation

R
ules

E
valuation

R
ules

E
valuation

Figure 4.3: Evaluation Cycles

Rule condition EBNF grammar

<rule_condition> ⇒ <Boolean_expression>

<Boolean_expression> ⇒ <term> | <term> <add_op> <Boolean_expression>

<term> ⇒ <factor> | <factor> <mult_op> <term> | <not_op> <factor>

<factor> ⇒ <constant> | (<expression>) | <store_check>

<add_op> ⇒ OR | '||'

<mult_op> ⇒ AND | '&&'

<not_op> ⇒ NOT | ' !'

<store-check> ⇒ Store.checkFact(PATTERN) | Store.checkEvent(PATTERN)

<constant> ⇒ true | false

Figure 4.4: EBNF grammar for rule conditions

store has changed, is so a rule evaluation processing is executed to be followed
by a post-processing step in charge of cleanup and timers management.

The current implementation of the Active Server evaluates Active Ontologies
up to ten times per second. However, each Active Ontology can be individually
con�gured to be evaluated less frequently, depending on its purpose. The max-
imum evaluation cycle of 100 milliseconds (10 Hz) has been chosen for practical
reasons. First, the prototype applications we intend to build are user-driven
systems, their are not real-time control system that need to react within a few
microseconds. We are going to build and experimental system, designed to work
within the constraints of simple user centric applications. A performance evalu-
ation and potential optimizations of our software suite are detailed in section 7.3
on page 175.

A rule condition can be represented as conditional trigger used to detect spe-
ci�c events on the fact store. Rules conditions are Boolean expressions, whose
value after evaluation is true or false. Conditions are Boolean expression con-
sisting of operators, values and store-checks. Supported operators include dis-
junctions (OR), conjunctions (AND) and negation (NOT). Values are Boolean
constants (true or false). Elements of type store-check de�ne a fact pattern,
based on uni�cation to test the presence of speci�c facts in the store.

There are two �avors of store-checks. The �rst type, check-event, tests only
against the group of new facts that triggered the evaluation cycle. The second
type, a check-fact, operates over the whole fact store for any fact that matches
its pattern. The Active API provides two primitives to de�ne store-checks in
rule conditions:

45

Store.checkFact(Fact factPattern)
Store.checkEvent(Fact factPattern)

For a given evaluation cycle, check-events only check against the small set
of facts that where modi�ed since the last evaluation, whereas check-facts check
against the entire fact store. Following sections show how the di�erence between
check-events and check-facts is used to signi�cantly improve the performance
behavior of Active applications.

Actions are snippets of code expressed in a target programming language
(currently Javascript and Java are supported) executed when the associated
condition is evaluated as true. The Active API o�ers a collection of pre-compiled
utility functions to print messages to the console or access the fact store. In
addition, extensions can be designed and packaged to extend the set of functions
available to Active programmers. Such extensions are pre-packaged libraries to
support AI methods and techniques (i.e. language processing, process modeling)
or various utility modules (i.e. web services/SOAP communications, database
connectivity). The Active programming SDK allows programmers to create new
extensions for the Active system.

4.2.5 Simple conditions

To describe the evaluation process of rule conditions, let us consider the following
notation:

• FS (Fact Store) is the set of all known facts (entire fact store).

• MF (Modi�ed Facts) is the set of new facts asserted since the previous
evaluation cycle, that triggered the current evaluation cycle. MF is a
subset of FS.

• R is the rule to evaluate, whose condition is a valid expression according
to the grammar show in �gure 4.4. The expression contains check-event
and check-store elements.

For the rule R to �re, at least one of its check-event provides a pattern that
uni�es with at least one fact of MF.

Example

As an example, �gure 4.8 shows a rule to detect the addition of new employees
and managers.

Rule name PrintNewEmployee

Condition Store.checkEvent(employee($, $, $, $))

Action System.printConsole('A new employee was added');

Rule name PrintNewManager

Condition Store.checkEvent(employee($, $, $, manager))

Action System.printConsole('A new manager was added');

Figure 4.5: Simple Rules

46

4.2.6 Conditions with variables

Variables play an important role in the process of condition rule evaluation.
Unnamed variables are wildcards that always unify with their counterparts.
Named variables are more useful. When a named variable uni�es with a fact, it
becomes instantiated with the matching fact and, for the rest of the uni�cation
process, it is not considered as a variable anymore but as a known bound value.
The instantiated, or bound, variable whose value was set from the conditions
part of the rule, can be used in the action part of the rule. For instance, the
rule shown in table 4.6 uses the retrieved lastname of managers from the rule
condition (named variable $lastname) to print it in the action part.

When variables are used, the process of rule evaluation is slightly more
complex. It starts similarly as the description given in section 4.2.5, but if
the rule condition has variables, more processing is required to gather actual
values for the variables. For each check-event of the rule condition, a result set
is fetched by collecting all facts from MF that match the check-event pattern.
Similarly, for each check-fact, a result set if fetched from FS. At this point, each
store-check (whether it is a check-fact or a check-event) has a corresponding set
of facts that match its pattern. Since bound variables are used in the action
part of the rule, the last step of processing consist of executing the rule action
with all valid and unique combination of facts that were gathered.

Examples

Rule name PrintNewManager

Condition Store.checkEvent(employee($, $name, $, manager))

Action System.printConsole('A new manager '+$name+'was added');

Figure 4.6: Simple Rule with a Variable

4.2.7 Compound rule conditions

As shown before, rule conditions contain one or more store-checks. Complex
rule conditions may involve multiple dependent queries to the fact store, they
are compound rule conditions. Dependencies among queries are expressed with
named variables, where the same variable appears in multiple check-stores.

Example

As an example, let us consider the rule shown in �gure 4.7 designed to print out
employees based on their title. To trigger the rule, a fact of the form has to be
asserted into the fact store: print($type_of_employee)

For instance, to print all managers, on would assert: print(manager)

47

Rule name PrintAllEmployeesByCategories

Condition Store.checkEvent(print($category)) &&

Store.checkFact(employee($,$name, $, $category))
Action System.printConsole('Employee ' + $name + ' is a ' + $category);

Figure 4.7: Compound Rule

The rule shown in �gure 4.7 is a compound condition involving two depen-
dent conditions. During the evaluation cycle, the check-event :

Store.checkEvent(print($category))

triggers the evaluation of the rule. It is acting as a pre-condition of the rule,
triggered to detect the print command in the MF and bind the variable $cate-

gory. In our example, the $category is bound to the value manager, and the second
store-check (a check-fact):

Store.checkFact(employee($,$name, $, $category))

searches the whole store with the pattern : employee($, $lastname, $, manager).
For each match, the second named variable $lastname gets bound with the ac-
tual manager name and the rule �res. The action code snippet is therefore
executed with two bound variables and can print out the correct information.
When writing Active compound conditions, it is a good practice to use check-
events as guards to be evaluated before evaluating more costly check-fact over
the entire fact store. Following this approach, Active has been inspired by
ECA (Event Condition Action) techniques mentioned in section 2.1. Section 7.3
on page 175shows how this best practice can dramatically improve the perfor-
mances of an Active-based application.

4.2.8 Cascade Processing

An important characteristic of production rule based systems consists of cas-
cading rule executions, where specialized rules would detect a situation and
communicate results by asserting new facts to trigger further processing. Prim-
itives of the Active API can be used in rules actions to assert new facts, and
therefore trigger more evaluation cycles and rules �ring.

For instance, let us consider two rules, one to detect any assertion of a new
manager and another one specialized to send noti�cations as emails.

Rule name DetectNewManager

Condition Store.checkEvent(employee($, $name, $, manager))

Action System.printConsole('A new manager was added');

Fact.writeFact(send_email('bob@company.com', $name + '

was added as a new manager');

Rule name SendEmail

Condition Store.checkEvent(send_email($to, $message))

Action Mail.send($to, $message);

Figure 4.8: Simple Rule Cascading Execution

48

This principle of cascading rule execution is crucial in Active-based method-
ologies. By nature, Active Ontologies organize rules according to a network of
interconnected concepts, where each concept is instrumented with specialized
rules. When a rule attached to a concept �res, it uses ontological relationships to
spread information along the structure and propagate more processing towards
connected concepts. Section 5.1 shows how this principle is used for named-pipe
communications and invocation-like techniques.

4.2.9 Fact creation

Section 4.2.8 introduced how cascading execution of rules is implemented by
creating new facts. Active supports multiple techniques to assert new data into
the fact store.

Using the diagram of �gure 4.3 on page 45 as a reference, we can chrono-
logically describe what happens during fact assertions. At evaluation cycle n a
fact f is to be asserted into the fact store, either internally by a the action code
of a rule that �red or externally through the external communication channels
of the Active Server (i.e. a sensor reports an event). This asynchronous event
can occur at any time during the nth cycle, after some rules have already been
checked for evaluation while others are still to be evaluated. To ensure that all
rules take the new fact into account within the same cycle, f is not immediately
written but scheduled to be actually asserted at the end of the cycle during the
post processing stage. Therefore, at the cycle n+1, all rules will have a chance
to take f into consideration.

In many cases, Active rules assert facts to inform other processing compo-
nents about a speci�c event. They do not intend to assert new permanent pieces
of information but rather send an short lived signal. To facilitate this technique,
Active supports the notion of specialized facts called event-facts. An event is
a fact that lasts only for one evaluation cycle, it is ephemeral. As an example,
let us assume a system with two rules, R1 and R2 (see �gure 4.9). At cycle
n, R1 �res and creates the event-fact event(r2). At the end of cycle n the post-
processing stage actually asserts event(r2) and tags it as being an event-fact. At
the cycle n+1, R2 �res and performs its action. At the end of cycle n+1 the
post-processing stage looks for event-facts to delete and therefore automatically
removes event(r2).

Rule name R1

Condition Store.checkEvent(test($value))

Action if (factToInt($value)>2)

Store.createEvent(event(r2));

Rule name R2

Condition Store.checkEvent(event(r2))

Action System.printConsole(�Rule R2 �red�);

Figure 4.9: Event Generation

The Active API o�ers two primitives to assert facts and event-facts:

49

Store.writeFact(Fact fact)
Store.createEvent(Fact fact)

Active includes the time dimension into its programming model. For in-
stance, rules can be programmed to �re if a speci�c event does not occur within
a given amount of time. To model this type of behavior, Active programmers use
the fact scheduling technique. The Active API function Store.scheduleFact(Fact

f, Date d) instructs the fact store to assert a fact at a speci�ed moment in time
and can be used to install alarms that will trigger condition rule execution at
a speci�c time. Figure 4.10 illustrates this technique. When rule R1 �res it
installs an alarm to �re after a speci�c delay by scheduling the assertion of a
fact of the form alarm($value). A specialized thread of the Active Server is in
charge of keeping track of facts and event-facts scheduled for assertion. When
the time delay is reached, it asserts the facts into the store, thus triggering an
evaluation cycle. In our example, rule R2 would �re and report the alarm.

Rule name R1

Condition Store.checkEvent(install_alarm($value, $time_delay))

Action Store.scheduleEvent(alarm($value), factToInt($time_delay))

Rule name R2

Condition Store.checkEvent(alarm($value))

Action System.printConsole(�Alarm � + $value + � �red�);

Figure 4.10: Time-based fact assertion

Usage of this technique is further demonstrated in section 5.1 on page 57.
Active applications consist of one or more specialized Active Ontologies, each

performing an aspect of the intelligent assistant system to build. Therefore,
Active Ontologies need to communicate with each other to synchronize their
actions and share information. In the context of Active, all communications are
based on fact assertion and rule �ring. Two sets of primitives are o�ered by the
Active API to provide cross-ontology processing.

On the listener side, two specialized check-stores can be used to include
events happening in di�erent Active Ontologies in rule conditions:

Store.checkFactFrom(Fact factPattern, String ontologyName)
Store.checkEventFrom(Fact factPattern, String ontologyName)

On the sender side, the Active API o�ers primitives to assert and schedule facts
and event-facts into foreign Active Ontologies:

Store.writeFactTo(Fact fact, String ontologyName)
Store.createEventTo(Fact fact, String ontologyName)
Store.scheduleFactTo(Fact fact, Date date, String ontologyName)
Store.scheduleEventTo(Fact fact, Date date, String ontologyName)

Figure 4.11 shows an example where the Active Ontology A1 installs an alarm
into the Active Ontology A2.

50

Rule name R1 (In Active Ontology A1)

Condition Store.checkEvent(install_alarm($value, $time_delay))

Action Store.scheduleEventTo(alarm($value),

factToInt($time_delay), A2)

Rule name R2 (In Active Ontology A2)

Condition Store.checkEvent(alarm($value))

Action System.printConsole(�Alarm � + $value + � �red�);

Figure 4.11: Cross-Ontology Communication

4.2.10 Evaluation cycle control

As shown in �gure 4.2 on page 40, rules are grouped into rulesets attached
to concepts. Both rules and rulesets have priorities, expressed as an integer
value. The higher the value, the higher the priority. During an evaluation cycle,
rule-sets are evaluated in their order of priority (high priority �rst), and within
rulesets rules are also evaluated in their order of priority.

Two evaluation policies control the processing behavior of a rule set. In the
case of the evaluate-all policy, all rules of the rule-set are evaluated in their order
of priority. In the case of �rst-success policy rules of the rule-set are evaluated
in their order of priority until one of them succeeds. After that, the evaluation
of the rule-set stops and remaining rules (of lower priority) are skipped.

4.3 The Active software suite

This section describes the current implementation of the Active software suite.
The suite is a Java-implemented set of applications designed to be extensible
and open. It consists of four components. The Active Server, the Active Editor,
NL Test, and the Active Console. To ensure ease of integration and extensibility,
components of the Active platform communicate through web service (SOAP)
interfaces. For both the Active Editor and Active Server, an open (SDK) plug-in
mechanism enables researchers to package AI functionality to allow developers to
apply and combine the concepts quickly and easily. A set of Active extensions is
available for language parsing, multimodal fusion, dialog management and web
services integration.

4.3.1 Active Editor

The Active Editor (see �gure 4.12) is an IDE (Integrated Development En-
vironment) used by programmers to model, program, deploy and test Active
applications.

Working areas

The editor consists of four main working areas.

• The Graph pane (Top left). As a multi-document container, this area
allows navigation among opened ontology �les. Each tab hosts a visual

51

view of the Active Ontologies being worked on, where concepts can be
added, removed, and visually arranged. Each tab is labeled with the
name of the Active Ontology it contains and provides a dirty �ag (orange
star) to indicate that an Active Ontology has been modi�ed but not yet
saved.

• The Tree Navigation pane (Bottom left). The second area is the ontology
navigation panel, showing a tree view of the selected ontology. It o�ers a
tree-like navigation among concepts and rules.

• The Code pane (Bottom right). Based on the selected ontology element
(concept, rule set, or rule), the code pane allows attributes and code edi-
tion. If the selected element is a concept, the code panel allows edition
of the concept's name, its evaluation priority and text description. If the
selected element is a rule, the code panel features two sub-tabs. The �rst
for edition of the rule name, attributes, and text description, the second
features two text areas to express the condition and action of the rule.

• The Debug pane (Top right). This section is designed for testing and
debugging Active Ontologies. Programmers can assert facts into an Active
Server where their Active Ontologies have been deployed, and get direct
feedback through system level and user de�ned events.

Working with the Active Editor

Active programmers typically work with the Active Editor (the editor) con-
nected with a live Active Server (the server). Active Ontologies being worked
on are regularly deployed into the server for testing and execution. The action
of deploying an Active Ontology actually sends its de�nition (concepts, rule-
sets, rules and relationships) from the editor into the server for execution. Once
deployed, Active Ontologies can be executed in debug mode or release mode.
In debug mode, the server sends runtime events back to the editor to inform
programmers about execution steps. The Debug pane of the editor reports a
list of runtime events received from the server. Each event is time-stamped and
carries information about four types of events:

• Evaluation cycle. An event is generated for each evaluation cycle.

• Rule execution. For each rule that �res, an event reports the name of the
rule and the values of all bound variables.

• Execution error. If the snippet of code executed when a rule �res fails to
properly execute, a full error reports is reported.

• Logging. For debugging purposes, action code snippets can log informa-
tion to be reported directly to the editor.

The editor support simultaneous editing of Active Ontologies, allowing devel-
opers to work on all aspects of their intelligent assistant application. It allows
them to design, test and debug end-to-end applications within the same uni�ed
and coherent environment.

52

Plug-ins and Wizards

In addition to its rich visual feature set, the Active Editor comes with an SDK
allowing Active programmers to create Active Editor Plug-ins, or simply plug-
ins. A plug-in is an add-on to the Active Editor providing an interactive dialog
box (or wizard) to ease and automate the creation of concepts. Plug-ins are
written in Java and implement the required classes and interfaces of the Active
Editor SDK to be seamlessly integrated to the IDE. When prototyping and
test new approaches, Active rules are manually written and tested. Once the
approach is functional, a plug-in can be written to gather high level information
from a user through a wizard and automatically generate an Active concept
with all its rules and rulesets. For instance, a plug-in for language processing
applications launches a specialized wizard that will ask programmers to provide
a vocabulary set. Once the list is provided, the plug-in automatically creates
and inserts a concept containing all necessary rules and rulesets.

Figure 4.12: Active Editor

4.3.2 Active Server

The Active Server (see �gure 4.13) is a scalable runtime engine that hosts and
executes one or more Active programs. The Active Server is written in Java
and can either be running as a standalone application or deployed on a J2EE
compliant application server. The server consists of the following functional
elements:

53

Active Server
Active Ontologies

Fact store

Evaluation
Engine

Extensions

SOAP/RMI/REST Interface

Services

Figure 4.13: Active Server

• Fact Store. An implementation of the fact store described earlier in this
chapter (see section 4.2.3 on page 43). The current implementation of the
fact store is an in memory store. The store is nevertheless abstracted out
and can therefore optionally support implementations that persist facts
into an RDBMS , providing robustness to catastrophic failures.

• Active Ontology repository. Internal store where the Active server persists
the de�nitions of Active Ontologies to run. The current implementation of
the store is �le-based, so that restarting the Active Server does not imply
re-deploying Active Ontologies. Similarly to the fact store, the Active
Ontology repository is abstracted out and can optionally connect to an
RDBMS for scalability and robustness. Each deployed Active Ontology
has its own private space in the fact store to persist its execution context.

• Evaluation engine. At the core of the Active Server, the evaluation engine
regularly checks each Active Ontology space in the fact store for changes.
If any fact has changed since the last check, an evaluation cycle (see sec-
tion 4.2.4 on page 44) is triggered.

• Extensions. Similarly to the Active Editor, the Active Server is extensible
using a public SDK allowing programmers to create Active Server Exten-
sions or simply extensions. Extensions are pre-compiled libraries written

54

in Java that encapsulate processing into reusable components. Active
Server comes with a built-in extension that o�ers functions to print state-
ments in the console or generate debugging events. Extensions can also be
used to extend the Active Server capabilities to sense its environment. For
instance, extensions have been designed and implemented so that Active
Server can read and send emails (from any POP compliant mail server)
or have an Yahoo Instant Messenger c© front-end as a user interaction
modality.

• Communication Interface. As the core of Active-powered applications,
the Active Server needs to be open and easily connected to sensors and
actors. It therefore exposes access to its internal components through
multiple standard communication channels (SOAP, REST and RMI).

� Fact store. The fact store is accessible for read and write. Sensors
and user interfaces report their events by asserting (writing) facts
into the fact store. The next evaluation cycle will take incoming
events into account and trigger relevant rule processing. In addition,
the fact store can be read by external applications for debugging and
monitoring of activities.

� The Active Ontology repository is also exposed so that external appli-
cations, such as the Active Editor, can deploy new Active Ontologies
for executions. Management tools, such as the Active Console, can
manage the status of deployed Active Ontologies.

4.3.3 Active Console

The Active Console permits observation and maintenance of a running Active
Server. The console o�ers multiple operation panels for fact store introspection
and for Active Server administration.

s

Figure 4.14: Active Console

55

The fact store introspection panel (see �gure 4.14) allows Active program-
mers to inspect the content of the fact store using pattern-based queries. For
each query, the fact store returns all facts that unify with the provided pattern.
The Active Server administration panel is used to manage deployed Active On-
tologies and available Active Extensions.

4.3.4 Language processing test console

The language processing console provides an interface for developers to test
their natural language applications, entering in queries and analyzing the results
returned by natural language ontologies. The tool supports both an interactive
mode, as well as a batch mode, essential for regression testing � this way as the
NL domain evolves, application developers can ensure that the overall system
performance in terms of understanding queries has improved, not degraded.
This tool is described in more details on page 92.

4.4 Conclusion

Following the Theory of Operations chapter that motivated our de�nition and
vision for a uni�ed platform for intelligent assistant applications, this chapter
presented in more details the core our tool, the Active framework.

First, we de�ned in more details the concept of Active Ontologies. We
presented how Active Ontologies are used as a conventional ontology to model
knowledge about a domain. We then presented how Active Ontologies are also
execution environments based on facts and rules. Basic concepts such as fact
uni�cation and evaluation cycles have been presented to further explain Active
based processing. A series of simple examples follow, to gradually introduce the
most important principles and concepts used in Active programming.

The last section of the chapter presented the current implementation of the
Active framework. The Java-based software suite consists of an IDE (the Active
Editor), a runtime engine (the Active Server), a testing tool for natural language
applications, and an administration tool (the Active Console).

Based on the Theory of Operations and Active Kernel, the next chapters
of this document present in details the Active-based methodologies to imple-
ment, in a uni�ed and coherent framework, major components required to built
intelligent assistant applications.

56

Chapter 5

Active Methodologies

This chapter presents how Active Ontologies are used as the foundation of in-
telligent applications. Each section presents a methodology, and has a brief
introduction and a conclusion to summarize what has been achieved. Section
5.1 introduces low level constructs used by Active Ontologies to communicate
and delegate invocation of sub tasks. Section 5.2 presents two language process-
ing techniques implemented with Active. Then, section 5.4 describe how Active
Ontologies are used to model complex actions and execute them in a business
process engine style. Finally, section 5.3 describes how dynamic selection of
services is implemented in Active.

5.1 Basic methods

This section presents two basic mechanisms implemented in Active to achieve
communication over pipes and asynchronous RPC -like invocations.

5.1.1 Communication channels

General approach

This section describes a convention to be followed by Active programmers to
implement inter-concept communication using the notion of virtual communi-
cation channels or pipes. A pipe has a source (the sender), a destination (the
receiver) and some information to communicate. As the source writes a new
piece of information into the pipe, the destination is noti�ed and can read the
content of the pipe.

In the context of Active, this technique is implemented using cascading rule
execution (introduced in section 4.2.8 on page 48). Typically, both the source
and the destination are rules, the source asserts a fact as part of its action code
and the destination reacts through its condition being veri�ed. Our convention
to produce pipe-based communication uses facts of the following form:

De�nition 1 Standardized pipe fact

pipe($source_name, $destination_name, $data, $attribute_list)

Where the main elements are:

57

• source_name: To identify of the source of the pipe

• destination_name: To identify the destination of the pipe

• data: The information to convey across the pipe

• attribute_list: A list of optional attributes of the form : [$attribute1, at-

tribute2, ...], used to qualify the information passed in the pipe. For in-
stance, con�dence or reliability values can be used to assess the quality of
the information communicated. The convention described here does not
impose any speci�c attribute of the list, it simply states that the fourth
member of the pipe fact is a list.

Usage

Figure 5.1 shows an example of two rules exchanging information through a
communication channel. To trigger the exchange, the rule source S1 asserts
a fact that complies with the pipe-based communication convention. It speci-
�es its name as the source, D1 as the destination and communicates the data
value(test). The rule D1 uses a condition pattern pipe($source, D1, $value, $at-

tribute_list) designed to react to any communication with S1 as destination,
regardless or the source, the data or the attributes.

Using the �exibility of fact uni�cation (see section 4.2.2 on page 41) the
destination of the channel can de�ne more strict conditions on the pipe. To listen
to facts coming from S1 only, it would use Store.checkEvent(pipe(S1, D1, $value,

$attribute_list)) where the source is not a variable anymore but the constant S1.
Similarly, the source can broadcast a message to all listeners by asserting a

fact of the form pipe(S1, $, value(test),[]) where the destination is not speci�ed but
represented with a wild unnamed variable. Similar uni�cation-based constraints
also can be applied on the type of data to transmit and the list of channel
attributes.

Rule name S1

Condition Store.checkEvent(test(simple_communication))

Action Fact.overwriteFact(pipe(S1, D1, value(test),[]), pipe(S1, D1, $, $));

Rule name D1

Condition Store.checkEvent(pipe($source, D1, $value, $attribute_list))

Action System.printConsole(�Got message from � + $source +

� value is� + $value);

Figure 5.1: Simple channel-based communication

By convention, pipes contain a single value and every pipe assertion over-
writes its current content. This is why S1 uses the Fact.overwriteFact function
(introduced in section 4.2.3 on page 43) using the deletion pattern pipe(s1, d1,

$, $) to ensure that there is only one value in the pipe at any given time.
Finally, using cross-ontology processing (see section 4.2.9 on page 49) chan-

nels can connect rules and concepts across multiple Active Ontologies.

58

5.1.2 Invocation mechanism

General approach

Using facts and rules, an invocation mechanism has been designed to implement
asynchronous RPC-style calls with Active. An invocation is a two-way operation
where a caller (typically the action of an Active rule) invokes a functionality
provided by a callee (typically another Active rule) by providing an operation
name and a list of parameters. In return, when processing is done the callee
returns some results to the caller.

The caller triggers an invocation by asserting a standardized invocation fact
(see de�nition 2) that contains the name of the function to call and a list of
invocation attributes. The callee is implemented as a rule whose condition
pattern reacts to standardized invocation facts and whose action provides the
processing to perform. Once done, the callee asserts a standardized invocation
result fact (see de�nition 3) to notify the caller about the results. In turn, the
caller uses a rule whose condition reacts to the invocation result fact to retrieve
the invocation results. Since Active uses a production rule model where all
interactions are based on events, all invocations are asynchronous. The caller
does not passively wait for the answer, but provides a specialized callback rule
to process the invocation results when produced by the callee.

In the context of Active, invocations are similar to calling loosely coupled
services. At runtime, there is no guarantee that a callee is available to respond
to a caller. Therefore, a timeout mechanism noti�es the caller if the callee
does not respond within a speci�ed amount of time. Finally, a caller can have
multiple pending invocations, therefore each invocation is tagged with a unique
transaction id, allowing the caller to correlate asynchronous results with the
correct call.

Due to their asynchronous nature, invocations are considered as sessions with
a unique identi�er and associated context. The context is the set of data the
caller had gathered at invocation time that needs to be retrieved when the result
comes. Since results are processed by a stateless callback rule, the invocation
identi�er is used to retrieve the context at the time of the invocation. This is the
responsibility of the caller to store at invocation any piece data to be retrieved
when invocation results are available.

Implementation

The implementation of this technique is based on the assertion of standardized
facts that convey the invocation information. These facts are de�ned as follows:

De�nition 2 Invocation fact
invoke($operation_name,$input_params, [tx_id($tx_id), timeout($timeout)]))

De�nition 3 Invocation result fact
invoked($tx_id, $result, [operation($operation_name), status($status)])

The fact de�nition 2 presents the standardized invocation facts. First, the
caller asserts an invocation fact to trigger invocations. The asserted fact pro-
vides the following values:

59

• operation_name: The name of the operation to invoke

• input_params: A list of input parameters

• tx_id: Unique transaction id for the invocation

• timeout: How long should the caller wait until the invocation is considered
to have failed

Similarly, the response of the callee is formatted as an invocation result fact
(fact de�nition 3), consisting of:

• tx_id: Transaction id used by the caller to correlate the result with the
response

• result: The results of the processing

• status: Invocation status, which could be success, failed or timeout

Finally, context facts are used to store the invocation context to be retrieved
when results are available.

De�nition 4 Invocation context fact
context($tx_id, $name, $value)

An invocation context fact consists of three elements:

• tx_id: Unique transaction id for the invocation

• name : The name of the variable to store

• value : The value of the stored variable

Now that we have introduced standardized facts used for invocation techniques,
let us examine how they are used. Figure 5.2 illustrates the sequence of events
unfolding when an invocation is performed.

To initiate the transaction, the caller performs a four-step sequence of ac-
tions:

1. Create a unique invocation identi�er used to correlate the invocation with
its result asynchronously produced by the callee.

2. Assert an invocation fact to describe all the invocation parameters.

3. Optionally assert all invocation context facts used to retrieve the invoca-
tion context when results are produced.

4. Schedule an invocation result fact to report a potential timeout. The fact
to schedule is of the form:

invoked($tx_id, $, [status(timeout)])

The fact is asserted using the method

void Store.scheduleFact(Fact factToWrite, Date date)

introduced in section 4.2.3 on page 43. Therefore, if no callee reacts, an
invocation result facts is automatically asserted after the speci�ed amount
of time to notify the caller that no callee has reacted.

60

Successful Invocation

Caller Callee

Tim
e

Generates unique transaction id
Asserts invocation fact
Schedules timeout fact

Rule Condition Fires
Provides some processing
Asserts invocation result fact
Removes scheduled timeout fact

Rule Result Callback Fires
Perform some processing
Cleanup the invocation context

Figure 5.2: Invocation timeline

At this point, a callee reacts through a rule whose condition matches the invo-
cation fact asserted by the caller.

1. Extracts input information. The callee needs to get the unique id of the
transaction and all relevant input attributes required for its processing.

2. Perform its speci�c processing. The callee implements some business logic
to be processed.

3. Communicate its results. Once the processing is done, the callee asserts
an invocation result fact to communicate results and the status of the
invocation.

4. Remove the scheduled timeout fact. Finally, since it has responded to the
invocation, it is the responsibility of the callee to remove the invocation
result fact previously asserted by the caller to report a potential timeout.

If there is no callee to respond to the invocation request, the scheduled invoca-
tion result fact to report a timeout gets automatically asserted when the timeout
value is reached. It then triggers the invocation result callback rule installed by
the caller to process the result of the invocation. (See �gure 5.3)

Finally, the caller gets the invocation result through an invocation callback
rule that listens to invocation result facts. This rule performs three main tasks.

1. Retrieve the results and invocation context previously saved.

2. Perform all relevant processing related to the invocation completion.

61

Timed-out Invocation

Caller Callee

Tim
e

Generates unique transaction id
Asserts invocation fact
Schedules timeout fact

Timeout fact is asserted

Rule Result Callback Fires
Perform some processing
Cleanup the invocation context

Figure 5.3: Invocation timeout timeline

3. Cleanup. All context related information of the invocation needs to be
cleaned up.

To facilitate the use of this technique, an Active Sever extension provides high
level functions. To help the reader understand this technique, here is a brief
introduction of the most important functions provided by the extension. First,
to initiate the invocation the caller uses:

String Invocation.invoke(String operationName, List inputParams, List
invocationAttrs)

Where the operationName is the method to call, inputParams the input param-
eters to pass and invocationAttrs optional attributes about the invocation process.
Such attributes specify timeout information (how long is caller ready to wait)
and the name of the Active Ontology where the callee is deployed.

The method generates a unique transaction id for the invocation, creates
and asserts the standardized invocation fact. It also uses timeout information
to schedule an invocation result fact reporting a timeout.

On the callee side, to report results and cleanup invocation data the following
method is used:

void Invocation.invoked(String invocationId, Fact result, boolean status)

This method �rst generates and asserts the invocation result fact providing the
caller with the invocation results. In addition, since no timeout needs to be
generated, the method removes the previously scheduled timeout fact.

Finally, when the results come back to the caller through its callback invo-
cation rule, the method:

62

void Invocation.�nalizeInvocation(String invocationId)

automatically removes all context facts that were created for the invocation that
is now complete.

To illustrate this technique and the usage of the Active Invocation extension,
let us consider the Active rules shown in �gure 5.4. The caller uses two rules,
CallerInvoke to trigger the invocation and CallerResultCallback as the invocation
callback to process the result. The callee, or service provider, is implemented a
single rule CalleeEcho o�ering an echo function.

Rule name CallerInvoke

Condition Store.checkEvent(test(invocation))

Action String tx_id = Invocation.invoke('echo', [message('hello')],

[timeout(1000)]);

Rule name CalleeEcho

Condition Store.checkEvent(invoke('echo',[message($MESSAGE)],

[tx_id($INVOCATION_ID)]))
Action Invocation.invocationSuccess(INVOCATION_ID, 'Echo: '+MESSAGE)

Rule name CallerResultCallback

Condition Store.checkEvent(invoked($TX_ID, $RESULT, [operation(echo),

status(success)]))

Action System.printConsole(�result=� + $RESULT)

Figure 5.4: Rules for simple invocation

Discussion

The invocation technique presented in this section may seem straightforward
and simplistic. It is nevertheless an important �rst step towards more inter-
esting techniques and powerful approaches to implementing core components
of intelligent systems. First, it demonstrates that a combination of rule-based
design, uni�cation and time-based fact management allows Active to not only
model pure rule-based mechanisms, but also more classic programming con-
structs such as pipe communication and asynchronous invocation. More impor-
tantly, the �exibility and ease of use of the systems allows us to very quickly
tackle interesting problems. For instance, what happens if there are multiple
callees able to answer a request from a caller? Do we want to call all of them?
Pick the best? This is the problem at the base of delegated computing and, in
our case, the foundation of our Active-based approach to dynamic selection of
services. (See section 5.3 on page 96 for details).

5.1.3 Conclusion

This section introduced two simple Active-based programming techniques: pipe
based communication and asynchronous invocation. These two examples illus-
trate how techniques are implemented by de�ning standardized facts and en-
capsulating processing into Active extensions. Now that these basic techniques

63

have been introduced, we will present how they have been used as the basis of
more complex and challenging components.

5.2 Language Understanding

This section focuses on language understanding techniques developed within
the Active framework. We start with an introduction to de�ne the role of
language processing in intelligent assistant applications. Then, we present how
a classic grammar-based approach has been implemented as an Active Ontology,
followed by a more innovative, powerful and integrated language processing
method based on domain de�nitions. Finally, a conclusion summarizes our
results and compares both techniques.

5.2.1 Introduction

By their very nature, user-centric applications need to communicate as naturally
as possible with users. Therefore, providing a natural language understanding
(NLU) component is important. Natural language understanding consists of
mapping sequences of utterances into formal structures designed for processing.
Ultimately, intelligent assistant applications should provide natural dialog-based
interaction, where users can literally say or express anything at any time. The
main characteristics of the NLU component we need can be summarized as
follows:

• Robust parsing. Our work focuses on dialog-like communications, provid-
ing robust parsing of short utterances. We are attempting to process,
understand and classify large text documents. Robust parsing needs to
deal with natural human interactions. People communicate with par-
tial utterances, relying on context to ensure understanding. We also use
dis�uencies such as interjections, words repetitions or corrections. To
be e�ective, the parsing technique therefore needs to be robust to short,
unconstrained and partial utterances by ignoring (skipping) unnecessary
words.

• Dialog and Context. Interactions with assistants consist of multiple ut-
terances, sharing and contributing to a context. For instance, one could
express ��nd movies in San Francisco tonight�, followed by �oh, and also
book me a table at a French restaurant�. Both utterances share the same
context, therefore the second part of the dialog should not have to specify
the location.

• Data validation and resolution. The NLU component needs to produce
valid and complete information to ensure e�cient processing. For instance,
if a city name is speci�ed by an utterance, the NLU component not only
detects the name of the city to consider, but could also provide additional
data such as a zipcode or a state name. References to �on Tuesday� or
�in three days� can be validated and resolved to a canonical form (e.g.
date(08, 10, 2007)). Anaphoric references such as �him� should resolve to
the appropriate values given context.

64

• Suggestions/Errors. The NLU module needs to inform the user about its
reasoning by providing suggestions and errors. Suggestions inform users
about what could be expressed in their queries. For instance, users trying
to book a restaurants may be told by the assistant that they can specify a
price range. Errors explain why the assistant cannot process a user query.
It might be because of missing information or con�icting data preventing
the assistant from proceeding with user requests.

• Ambiguity management. Dealing with ambiguities is a two-step process:
�rst alternate interpretations are detected, then resolved. For instance, if
a user expresses a query of the form : �give me all american comedies in
sunnyvale for tonight and book a table for two at an italian restaurant�, fol-
lowed by a second statement saying: �no, I would like a French one�. This
is ambiguous, is the user asking for French comedies or a French restau-
rant? Once the ambiguity is detected, the assistant should use strategies
to resolve the problem. Resolution strategies may leverage context (as-
sume the user is referring to his or her latest utterance, restaurants in
our example), use incremental learning (usually this person is not decisive
about movies but always eats Italian food) or simply go back to the user
asking for a clari�cation.

• Multiple modalities. Intelligent assistants perceive language over multiple
sources. For instance, utterances can be typed in a user interface, the
result of a speech, handwriting or gesture recognizer or received as an
asynchronous message (email, short message or even an instant message).
The NLU component should then be open enough to deal with information
coming from multiple, heterogeneous sources.

The remaining parts of this section present how NLU has been implemented
in the Active context. First, we demonstrate how a traditional grammar-based
chart parser can be modeled using Active Ontologies. Then, after presenting
the strengths and weaknesses of grammar-based parsers, we illustrate a language
processing methodology based on Active Semantic Networks whose properties
are more practical for building assistant applications.

5.2.2 Grammar-based parsing with Active

This section presents how traditional grammar-based chart parsers can be im-
plemented using Active Ontologies.

Grammar-based parsing

The goal of a grammar parser is to process an expression using a well-de�ned
set of grammar rules, resulting in a parse tree that represents a proof that the
expression is a member of the acceptable utterances de�ned by the grammar.
To illustrate our description, �gure 4.4 shows a simpli�ed English grammar in
the EBNF form, inspired from the famous example from Russell and Norvig
[69]:

65

Production Rule Example
(1) S ⇒ NP VP |

CP |

S Conjunction S

I + feel a breeze

stop here

I feel a breeze + and + I

smell a wumpus

(2) NP ⇒ Pronoun |

Noun |

Article Noun |

Digit Digit |

NP PP |

NP RelClause

I

pits

the + wumpus

2 3

the wumpus + to the east

the wumpus + that is

smelly

(3) VP ⇒ Verb |

VP NP |

VP Adjective |

VP PP |

VP Adverb

stinks

feel + a breeze

is smelly

turn + to the east

go + ahead

(4) CP ⇒ CommandVerb |

CP Adverb |

CP NP

go

turn + left

grab + the wumpus

(5) PP ⇒ Preposition NP to + the east

(6) RelClause ⇒ that VP that + is smelly

(7) Noun ⇒ stench | breeze | glitter | nothing

| wumpus | pit | pits | gold | east

(8) Verb ⇒ is | see | smell | feel | stinks | go

(9)

CommandVerb

⇒ shoot | go | grab | carry | kill |

turn | stop

(10) Adjective ⇒ right | left | east | south | back |

smelly

(11) Adverb ⇒ here | there | nearby | ahead |

right | left | east | south | back

(12) Pronoun ⇒ me | you I | it

(13) Name ⇒ John | Mary | Boston

(14) Article ⇒ the | a | an

(15) Preposition ⇒ to | in | on | near

(16) Conjunction ⇒ and | or | but

(17) digit ⇒ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Figure 5.5: Simpli�ed English EBNF grammar

The �rst step of the parsing process is the tokenization, where the input
sentence is decomposed into a sequence of tokens used to feed the parser. In our
context, inputs utterances are sequences of word tokens. Given the grammar
shown in �gure 5.5, submitting the utterance �I feel a breeze� to the parser,
should result in the construction of a tree-like structure shown in �gure 5.6.
With some grammars, ambiguous interpretations are possible, and in this case,
the parser should return a list of all valid parses of an utterance. If the input
utterance does not comply with the grammar, a parser should fail, indicating
the utterance is not valid.

66

S

NP

pronoun

VP

VP NP

article nounverb

‘I feel a breeze’

I feel a breeze
6

Figure 5.6: Parsing Tree

Chart parsing

Many techniques have been invented to implement grammar-based parsers.
Some parsers are based on a recursive technique, mechanism that produces
concise code in most procedural languages (C, C++ or Java). Other parsers
take advantage of backtracking to be very elegantly implemented in declarative
languages such as Prolog. In the case of Active, the most elegant and natural
way to implement a grammar-based parser is to use a chart parsing technique
[16].

Chart parsers use dynamic programming techniques where intermediate re-
sults are stored to be re-used when necessary. The technique consists of building
small bits of partial knowledge, stored as charts, used as the foundation for fur-
ther processing that will create more complex charts. This technique tends to
be faster than more naive methods and naturally leverages the production-rule
nature of the Active framework. A chart can be seen as a typed link that groups
consecutive tokens. The simplest representation of a chart would have three val-
ues: a type and two indexes (the �rst and the last tokens of the chart). For
instance, the sentence �I feel a breeze� would produce the charts sequence shown
in �gure 5.7.

Charts are incrementally generated using a bottom-up approach. At the �rst
stage, low-level charts are created from the terminal rules of the grammar (rules
7 to 17 in �gure 5.5). Once these basic charts are created, further processing
steps combine the current knowledge of the situation to create more complex
charts using higher rules of the grammar. The process continues until a chart
that links the �rst token to the last token is generated, indicating that the
utterance was successfully parsed. This incremental process where rules of the
grammar incrementally �re in a sequence as new information is inferred �ts very
well into the Active model. The following section describes how this algorithm
has been implemented for the Active framework.

Implementation

This section provides a high level de�nition of the Active-based chart parsing
implementation by presenting the set of standardized facts and important rule

67

0 I feel a breeze 1 2 3 4

verb(‘feel’) pronoun(‘I’) article(‘a’) noun(‘breeze’)

np(pronoun(‘I’) np(article(‘a’), noun(‘breeze’)) vp(verb(‘feel’))

vp(vp(verb(‘feel’)), np(article(‘a’), noun(‘breeze’)))

s(np(pronoun(‘I’)), vp(vp(verb(‘feel’)), np(article(‘a’), noun(‘breeze’))))

Figure 5.7: Charts creation sequence

de�nitions1. The Active implementation of a chart parser consists of converting
the EBNF grammar into a set of concept and rules that communicate through
standardized facts assertions.

De�nition 5 Standardized facts for chart parsing

(a) recognized($source,sentence($sentence),$con�dence)
(b) token($source, $value, $start_index, $end_index)
(c) nl_chart($chart_type,$value,$start_index, $end_index))
(d) voc($chart_type,$value))

The �rst step of the parsing process consists of asserting the utterance to
process. To do so, the component that captured the inputs (a user interface,
an incoming email or a speech recognizer) asserts a fact compatible with the
de�nition shown in de�nition 5 (item a), where source indicates the name of
the recognizer, sentence the utterance to parse and con�dence, a number that
ranges from 0 to 100, indicates the con�dence in the recognition of the values
to process. Note that in this example, only sentence is used, other values will be
more relevant in more complex parsing techniques.

Next, a rule in charge of tokenizing takes over to chop-o� incoming utterances
into tokens. Token facts (see de�nition 5, item b) are created and asserted. The
tokenizing rule, shown in �gure 5.8, illustrates how Active takes advantage for
the target language to manipulate the incoming sentence as Strings to create and
assert tokens.

1For full implementation details please refer to the Active Programmer's Guide or the
latest Active distribution.

68

Rule name : Tokenizer

Condition

Store.checkEvent(recognized($source,sentence($sentence),$con�dence))

Action

var token_as_string=FactUtil.removeQuotes(TOKEN);
var local_words_array = token_as_string.split(' ');
for (i = 0; i<local_words_array.length; i++) {
Store.createEvent(token(source, local_words_array[i], i, i+1));

}

Figure 5.8: Tokenizer rule

At the next step, rules in charge of implementing chart parsing take over.
Charts to be created and manipulated are also represented as fact, standardized
in de�nition 5, item c. A chart consists of four elements:

• chart_type. This is the name of the production rule that created the chart

• value: A list containing the token or the set of tokens that make up the
chart

• start_index, end_index. The boundaries of the chart in the sentence

The Active-based chart parsing technique is based on two types of rules: rules
for terminal nodes (low level rules) and rules for intermediate nodes (high level
rules). First, rules for terminal nodes act as the �rst line of processing, where
tokens are detected to create the �rst seminal batch of charts. The vocabulary
of the application domain is stored as a set of vocabulary facts (de�nition 5,
item d) that binds a word to a type. Low level rules use this knowledge and the
value of incoming tokens to create the �rst group of charts. As an example of
low level processing, �gure 5.9 shows the rule in charge of detecting pronouns
among asserted tokens. It uses a compound condition to bind tokens with known
vocabulary using a variable ($word). If the rule is veri�ed, is asserts a chart that
combines the incoming word, its type and its indexes in the incoming utterance.

Rule name : Pronoun

Condition

Store.checkEvent(word($source,$word,$start_index,$next_index))

&& Store.checkFact(voc(pronoun,$word))

Action

Store.writeFact(nl_char(pronoun, [word], start_index, next_index));

Figure 5.9: Rule to detect a leaf of type pronoun

Once the seminal set of charts has been created by low level rules, higher
level processing takes over to incrementally build more complex charts. Higher
level rules are encoded based on the grammar de�nition. Each non-terminal
production rule (production rules 1 to 6 in �gure 5.5) is converted into an
Active concept with a unique rule set. Each alternative (vertical bar separated

69

clauses on the right side of grammar the rule) is converted into an Active rule.
For instance, �gure 5.10 shows the rule in charge of creating a PP chart out of
the sequence of an NP chart and a Preposition chart (see production rule number
5 in �gure 5.5).

Rule name : PrepositionalPhrases

Condition

Store.checkEvent(nl_chart(np, $npValues, $npStart, $npEnd))

&& Store.checkFact(nl_chart(preposition, $prepValues, $prepStart, $npStart))

Action

Store.writeFact(nl_chart(pp, npValues + prepValues, prepStart, npEnd);

Figure 5.10: Rule to create a chart fact that represents a PrepositionalPhrase

Incrementally, rules �re to create more high level charts, until a chart cov-
ering all the tokens of the input utterance is generated, thus validating the
utterance with the speci�ed grammar.

Results and discussion

As the �rst simple application built with the Active framework, a chart-parser
helped us validate our approach, tools and implementation. In addition, chart
parsers are often used in natural language understanding applications, so this
was a important AI methodology to include in the library of Active-supported
techniques.

Since chart-parsing techniques do not require a recursive process and rely
instead on an incremental production rule-based approach, it has been easily
and elegantly implemented within the Active framework. As a complete basic
system, this work consists of our �rst demonstration that validates our approach
to implementing AI-based components with a single uni�ed and user friendly
toolkit. This prototype is the basis of the �rst Active methodology, where an
EBNF grammar can be converted into a set of Active rules to implement a parser
based on the chart-parsing algorithm. On the practical side, this application
has been used as a test-bed to use and debug the main components of the Active
software suite. Both the Active Server and the Active Editor (See �gure 5.11)
are working together as a programming environment in which a system has been
designed, implemented and tested.

The technique was implemented to parse utterances compatible with the
grammar shown on �gure 5.5. The parsing of a sentence takes about 200 mil-
liseconds. The system either produces the parsing tree for valid utterances, or
an error message if the sentence cannot be validated against the grammar. To
further test and validate our method, we also successfully implemented a chart-
parser for simple mathematical expressions that support four basic operators
(plus, minus, multiply and divide) and grouping with parenthesis.

After completion and initial tests, the chart-parser approach works as ex-
pected. Chart parsers are well suited for applications where strict parsing of
well-formed expressions are the inputs, such as a mathematical expression to
evaluate, or a piece of programming language code to compile. We are nev-
ertheless far from the set of features to provide described in section 5.2.1. In

70

Figure 5.11: Charts parser in Active Editor

particular, human speech is often dis�uent and agrammatical. Furthermore,
while it is easy to create a simple subset of the grammar of English (or another
natural language), it is an extremely di�cult endeavor to capture all nuances of
human language using grammar formalisms � researchers have dedicated decades
to the e�ort without declaring absolute success. Finally, if the intent is for the
intelligent assistant to be able to process utterances expressed in more than one
human language, a developer must start from scratch implementing their appli-
cation grammars for language � no or little reusability occurs in this large task.
In an attempt to �ll these gaps, the following section introduces a more cost-
e�ective and robust language processing technique based on Active Semantic
Networks.

5.2.3 Language processing with Active Semantic Networks

This section presents an innovative language processing technique that attempts
to cover more features of the list presented in section 5.2.1. This approach fully
leverages the philosophy of Active Ontologies, where semantic de�nition and
processing are fused to implement AI techniques, language processing in this
case. The result is a powerful methodology for rapidly constructing robust
language understanding models suitable for intelligent assistant processing.

General approach

The technique is based on a two-step process. First, using concepts and rela-
tionships, an ontology-like model of the application domain is built. The second

71

step consists of injecting a thin layer of processing into speci�c concepts of the
ontology to turn it into a language processing environment. The resulting Ac-
tive Ontology is designed to react to incoming utterances and tokens, create
and manage an information �ow over its network of concepts to produce com-
plete structures representing user intentions. To illustrate our description, let
us consider the Active Ontology shown in �gure 5.12. It is designed to parse
utterances that express commands to retrieve information about movies and
restaurants. Examples would be: ��nd movies in san francisco�, �get italian
restaurants� or �are any comedies playing in palo alto?�.

command gather

subject select action leaf

movie gather restaurant gather

style leaf rating leafgenre leaf actor leaf

Figure 5.12: Simple semantic parsing graph

The application domain is modeled as an upside-down tree-like structure
made out of connected nodes. When user utterances are submitted to the
system for processing, each token (word) is injected into the tree from its bottom
terminal leaves. Leaf concepts are specialized �lters designed to sense and rate
incoming events about their possible meaning. As tokens arrive, leaf nodes
use some logic (i.e. the value of the token, its position in the sentence, its
neighbors, regular expression-based pattern matching) to produce a semantic
rating and communicate it to their parent nodes along the semantic network
of relationships binding concepts. Connected to terminal leaf nodes, there are
two types of non-terminal nodes that make up the rest of the semantic parsing
tree: gather nodes and select nodes. First, gather nodes create structured
objects made out of information coming from their children. For instance, in
our example, a movie is made out of actors and a genre. The second type, select
nodes, picks the single best rating coming from their children. For instance, the
node subject of our example is in charge of choosing whether the user is talking
about restaurants or movies. As members of the hierarchy, non-terminal nodes

72

report results to their own parent nodes.
Through this bottom up execution, input signals are incrementally assembled

up the domain graph to produce a structured command at the root node. The
following sections describe the behavior of these components in more details.

Semantic ratings Before further describing the elements of our language
processing technique, let us de�ne the basic piece of information �owing up the
semantic graph: semantic ratings. A semantic rating is produced by any node
of the semantic graph about the meaning of a group of tokens. The semantic
rating is to be placed in a communication pipe (see section 5.1.1 on page 57)
connecting a child node to its parents. Communication pipes follow the semantic
relationships among the nodes of the application domain.

De�nition 6 Pipe for communicating semantic ratings

pipe($child_name, $parent_name, $value, [conf($con�dence)])

De�nition 6 shows the structure of a communication pipe containing a se-
mantic rating. It consists of the following components:

• child_name and parent name : The source and destination of the pipe

• value : the semantic value of the incoming token expressed as : seman-
tic_value(token)

• A list of attributes to characterize the rating. Among possible attributes,
the con�dence of the rating is expressed as an integer number ranging from
0 to 100. Leaf nodes generate semantic ratings based on their con�dence
about the word being rated. In most cases, leaf nodes express either
a full con�dence (100) for words they successfully rate. On the other
end, as explained later in this section, non-terminal nodes (gather and
select nodes) compute an overall rating based on their number of children,
individual ratings weighted by each individual child properties. Therefore,
non-terminal nodes use a large spectrum of values, ranging from 0 to 100
when creating their semantic ratings.

For instance, a leaf node representing a movie genre reacts to words such as
comedies, thrillers or action movies to notify its parent that the user may have
expressed a sentence involving a type of movie. For the incoming utterance:
��nd thrillers in san francisco�, the genre node would create a claim of the
form:

pipe(genre, movie, genre(thriller), [conf(100)])

The following sections describe in more details all the components and fea-
tures of the Active semantic tree approach to language processing.

Basic components

Semantic networks consist of three types of components: terminal leaf node,
non-terminal nodes and relationships. The following paragraphs describe these
components how they are combined to implement a simple but robust language
processing engine.

73

Terminal leaf nodes As described in the introduction, leaf nodes are the
front line of processing, transforming incoming tokens into semantic ratings. To
create their semantic ratings leaf nodes use multiple techniques.

• Vocabulary list. The easiest way for leaf nodes to make claims about
incoming tokens is to compare them with a known vocabulary set. For
instance, a list of movie types can be speci�ed so that the genre leaf of
our example can make decisions.
Each entry of the vocabulary list consists of a semantic value and a list of
possible synonyms. For instance, the semantic value william would have
william, bill, willy as possible synonyms to check against.
Finally, to support dis�uencies our approach not only uses strict string
comparison but also a less strict mechanism, based on the Levenhstein
distance[47]. The Levenhstein distance between two strings is the mini-
mum number of operations (character permutation, addition and removal)
to perform on one string to become equivalent to the other.

• Pre�x and Post�x. The vocabulary list technique described above may
not be �exible enough to represent large partially known sets of data. For
instance, the city node cannot specify an exhaustive list of cities, nor could
the actor leaf node specify all actors in the world. Therefore, a technique
using multiple tokens and their position in the incoming utterance has
been designed for leaf nodes to create semantic ratings. A rating can
be generated for any word that directly follows a list of known pre�xes.
For instance, the city leaf can �re for any token that follows the pre�x
in. Therefore, for any utterance of containing �in paris� or �in miami�
the city leaf would claim the token �paris� or �miami� as a city without
having to know about all cities in the world. For instance, if you wanted
to parse three dollars, where three could be any number word, you might
look for the su�x word dollars.

• Regular expression. Regular expressions can be used by leaf nodes to cre-
ate their ratings about incoming tokens. For instance, one can imagine an
application domain where users specify zipcodes. American zipcodes (or
postal codes) are expressed as either a �ve-digit number or a combination
of a �ve-digit number, followed by a dash (-) and a four-digit number. A
leaf node in charge of detecting them would use a regular expression pat-
tern of the form \d{5} to detect short forms of �ve digits or \d{5}-\d{4} for
full zipcodes. The richness and �exibility of pattern matching techniques
could also be used to detect numbers, e-mail addresses or any formatted
type structures.

• Specialized leaf node. Finally, some leaf nodes encapsulate a speci�c hard
coded logic to generate specialized ratings. For instance, many applica-
tions require time and date management (e.g. �book me a french restaurant
tomorrow night in Palo Alto�). We chose to implement date/time logic as
a plugin that generates ratings information in the form:

date($year, $month, $day, $hour, $minute)

The date node is capable of dealing with utterances involving information
about hours and days, such as �next Monday at 3 am�, �tomorrow morn-
ing�.

74

All four techniques described above may apply to multiple consecutive tokens
or words. Users can for instance specify an utterance that contains ��nd movies
in san francisco� or �get indian restaurants in new york city�, where city names
are longer than one token. Allowing multiple token processing brings interesting
situations. For instance, let us consider the following utterances:

1) ��nd movies in san francisco with john wayne�
2) �get comedies in miami with charlie chaplin�
3) ��nd thrillers in new york�

Let us assume that the city node is con�gured to process up to two consec-
utive tokens. When analyzing the �rst utterance, the city leaf node looks for a
single token or two tokens that follow the pre�x in. It has two possibilities : san
or in san francisco. To make the correct decision, leaf nodes are aware of the
overall length of the incoming utterance and all pre�xes used in the application
domain. Tokens after the pre�x are concatenated as candidates for the rating
until a known pre�x or the end of the utterance is reached. Therefore, in the
utterance 1), with being a pre�x de�ned by the actor leaf node, the city leaf
nodes would use city('san francisco') as the value of its claim. Similarly, in
utterance 2) city(miami) would be the value produced. Finally, in example 3)
the end of the utterance is reached and city('new york') will be the value.

Finally, if no token triggers the creation of any rating for a leaf node, two
cases are possible. First, if a default value has been speci�ed for the leaf, it will
be claimed with a hundred percent con�dence by the leaf. In the absence of a
default value, the leaf generates a missing rating with a zero con�dence.

Non-terminal gather nodes Gather nodes are in charge of aggregating in-
coming ratings from their children to create structured semantic ratings. As
part of the semantic parsing tree, they report their ratings to their own parents.
Children nodes to be aggregated are connected to gather nodes with relation-
ships of type is member of. As an example, themovie node gathers information
from both its children: the genre and actor leaf nodes.

Whenever one of its children node writes a new information into its pipe,
the gather node processing triggers. It starts by reading the latest information
from its children nodes to update its own semantic rating. First, the value
of the rating is updated by combining the values claimed by the children. A
compound object representing all children contributions is created. For instance,
in response to the utterance ��nd comedies with john wayne�, the movie node
would generate the following value for its rating :

movie(actor('john wayne'), genre(comedy)) .

Once the aggregated value of the rating has been generated, its con�dence
needs to be updated as well. In the simplest case, it consists of the average
of the children con�dences. Assuming C the set of all children connected to a
gather node, the con�dence is:

GatherConfidence =

∑
i∈C

ChildConfidencei

NbChildren∈C

75

In the spirit of Active, is member of relationships not only connect children
to the semantic super structure where they belong, but also provide information
useful at processing time. In addition to connecting a source and a destination,
relationships contain an attribute set used to further characterize their role in
the semantic network. For instance, is member of relationships carry a weight
attribute. The weight attribute is used by gather nodes to adjust the contribu-
tion of each child involved in the determination of their overall con�dence. The
con�dence formula becomes:

GatherConfidence =

∑
i∈C

ChildWeighti ∗ ChildConfidencei∑
i∈C

ChildWeighti

Now that we have seen how complex structures get created through parsing,
let us see how decisions are made to select parsing branches.

Non-terminal select nodes As the second type of non-terminal nodes, select
nodes pick one of their children as their rating. In our example, the subject node
is in charge of deciding whether the user is talking about movies or restaurants.
It has therefore to choose which child will prevail and be communicated up as
a semantic rating. Children candidates to be selected are connected to select
nodes with relationships of type is a.

Whenever one of its children node writes a new semantic rating into its
pipe, the select node processing triggers. Its goal is to get ratings from all its
children to select the best one re�ecting the intentions expressed by incoming
utterances. The basic heuristic, which will be further re�ned, consists of picking
the semantic rating that carries the highest con�dence. The overall con�dence
of the rating made by our select node would be the con�dence of the selected
child.

For instance, in response to the utterance ��nd comedies with john wayne�,
the subject node would select its child with the highest con�dence, the movie
node. It would then generate the following value for its rating :

subject(movie(actor('john wayne'), genre(comedy)))

Summary At this point of our description, all basic elements of our parsing
technique based on semantic trees have been introduced. If the utterance ��nd
comedies with john wayne� is submitted to our sample tree, the semantic ratings
shown on table 5.1 would be produced.

Let us brie�y describe the chronological chain of events. First, �ve leaves
(actor, genre, movie, style and action) create and report their semantic
ratings. Then, gather nodes restaurant and movie take over and produce
their ratings. The subject node of type select picks the most likely candidate
among its children (movie in our example) as its rating. Finally, the command
node, of type gather, produces the overall result of the parsing.

76

Node name Semantic rating

actor pipe(actor, movie, actor('john wayne'), [conf(100)])

genre pipe(genre, movie, genre(comedy), [conf(100)])

movie pipe(movie, subject, movie(genre(comedy), actor('john

wayne')), [conf(100)])

style pipe(style, restaurant, style($), [conf(0)])

rating pipe(rating, restaurant, rating($), [conf(0)])

restaurant pipe(restaurant, subject, restaurant(style($), rating($)),

[conf(0)])

subject pipe(subject, command, subject(movie, subject,

movie(genre(comedy), actor('john wayne'))), [conf(100)])

action pipe(action, command, action(get), [conf(100)])

command pipe(command, $, command(subject(movie, subject,

movie(genre(comedy), actor('john wayne'))),action(get)),

[conf(100)])

Table 5.1: Semantic Tree State

At this stage, we can already point some advantages of our approach over a
more strict chart parser-like approach.

• The system is more robust to dis�uencies and recognition errors. Interjec-
tions, repetitions or misrecognized words are gracefully ignored or claimed
with low con�dence, allowing the system produce partial results and give
a chance to the user to either repeat or more clearly express her or his
needs.

• Often, natural language applications create parsers based on the syntax
and semantics of each language they need to support, and then create
linguistic de�nitions for words in the domain of use. This requires spe-
cialized linguists and a large development time to map domain knowledge
into the linguistic model. By contrast, in Active, a domain is �rst mod-
eled in terms of concepts and then a relatively light layer of language is
added to it. Most of the domain modeling is completely reusable across
languages, and hence adding a new language to the application is achieved
much more quickly.

Based on these basic components and preliminary results, the following sections
describe further improvements and added features to our innovative parsing
technique.

Helper leaves

This paragraph introduces the notion of leaf nodes providing auxiliary informa-
tion. In some cases, words expressed by users provide information about which
part of the parsing tree should be given more con�dence, without contributing
to the data structure to be created. For instance, an utterance containing the
word "movies" indicates the topic the user is talking about, without providing
any speci�c information such as the genre nor the name of an actor. The word
"movies" should only bring more con�dence themovie node without being part
of its rating.

77

subject select action leaf

gather

style leaf rating leaf genre leafactor leaf

movie restaurant gather

command gather

movies
leaf restaurants leaf

Figure 5.13: Semantic parsing tree with helpers

To implement this behavior, leaf node can be connected to a gather node
using a provide auxiliary information relationship. Such children will contribute
to the overall con�dence of their parent gather node in a similar way as their
siblings connected as is member of children. The only di�erence between the
two types of children is that provide auxiliary information leaf nodes will not be
part of the structure created as part of the rating created by the parent gather
node.

To illustrate this concept, �gure 5.13 shows an extended version of our sam-
ple Active Ontology, where two new leaf nodes have been added. The nodes
restaurants and movies will be in charge of detecting the words restaurants,
restaurant and movies, �lms.

Therefore, the sentence: ��nd movies in palo alto� will produce the �nal
rating:

pipe(command, $, command(subject(movie, subject, movie(genre($),

actor($))),action(get)), [conf(100)])

Event if no movie type nor actors have been speci�ed, the movies node
quietly contributed to the con�dence of the movie node.

Mandatory or optional children

Some nodes of the semantic parsing tree represent pieces of information that
are required for the overall understanding of utterances. Another set of nodes
are optional and provide additional non-crucial data about the user intentions.
Through a simple example, this section shows how the optional or mandatory
status of nodes in�uence con�dence ratings and are used to build additional
parsing information.

78

style leaf rating leafgenre leafactor leaf

movie gather restaurant gather

subject select

command gather

movies

action leaf

leaf restaurants leaf

address gather

city leaf state leaf

state leaf

Figure 5.14: Semantic parsing tree with address

To illustrate this concept, let us extend the domain of our sample application.
Figure 5.14 shows a semantic network enhanced with a new address node, of
type gather, made out of a city, state and zipcode. Before developing more on
the concept of mandatory and optional elements, it is interesting to describe two
features of the address node. First, note that its children implement di�erent
techniques to produce ratings out of incoming tokens. The city leaf node uses
a pre�xed technique, where any word following the pre�x in would be rated
as a city name. The zipcode leaf node uses a regular expression to detect
zipcodes among tokens that are injected into the system. Finally, the state node
uses a vocabulary list containing the list of �fty US states and their synonyms.
Secondly, the address node is connected to two parents (both the movie and
restaurant nodes), which is a valid and useful feature of semantic parsing trees.
In this con�guration, the address node creates similar ratings reported through
to two separate communication pipes.

Now that the address node has been introduced, let us focus on optional and
mandatory elements. As an application designed to retrieve information about
hotels and restaurants, the system shown in our example should report an error
if the address structure is not speci�ed. To model this behavior in the Active
context we use a relationship attribute. The is member of relationship type,
that connects gather nodes to their children, carry a boolean attribute named
is mandatory. If checked, the attribute indicates that the child node has to be
provided for the structure to be valid. If not, the child is considered optional

79

and not crucial for expression the intention of the user. This information is
used in two aspects of our language parsing technique: gather nodes con�dence
computation and parsing information lists.

Con�dence computation of gather nodes This paragraph explains how
contributions vary between optional and mandatory children of a gather node.
As previously described, gather nodes create nested structures by assembling
values of their children. The overall con�dence of their claims is computed by
combining their children individual con�dence ratings. We have also seen that
the contribution of some children can be weighted to modulate their overall
impact on the global rating. Similarly, the optional or mandatory status of
children in�uences their contribution to the overall con�dence rating generated
by a gather node.

Mandatory children are required information for the parser to produce a
valid command, whereas optional children provide additional, non-critical in-
formation. Therefore, a missing optional child should be less penalizing than a
missing mandatory child to the overall con�dence. The con�dence formula to
consider can be expressed as follows.
The contribution of mandatory children is:

C1 =
∑
i∈C

ChildWeighti ∗ ChildConf i ‖ ChildiisMandatory

The contribution of optional children is:

C2 =
∑
i∈C

ChildWeighti ∗ ChildConf i ‖ ChildiisOptional, ChildConf i > 0

The overall con�dence of the gather node could then be expressed as:

GatherConfidence = C1+C2∑
i∈Cm

ChildWeighti

The approach can be further re�ned. Even if they are tagged optional,
missing children should incur some penalty to the con�dence rating of a gather
node. Our formula becomes:

C1 =
∑
i∈C

ChildWeighti ∗ ChildConf i ‖ ChildiisMandatory

The contribution of optional children that have been detected is:

C2 =
∑
i∈C

ChildWeighti ∗ ChildConf i ‖

ChildiisOptional, ChildConf i > 0

The penalty incurred by optional children that have not been detected is:

C3 = Mp ∗
∑
i∈C

‖ ChildiisOptional, ChildConf i < 0

Where Mp is the penalty for a non contributing child. The overall con�dence
of the gather node could then be expressed as:

80

GatherConfidence = C1+C2+C3∑
i∈Cm

ChildWeighti

Now that we have explained how mandatory and optional attributes in-
�uence con�dence ratings, we will see how they contribute to the creation of
additional parsing information.

Parsing information lists In addition to providing a value and a con�dence
in their ratings, nodes provide extra information about the parsing process. The
data is organized into three lists:

• Errors list. A list of error messages that prevented the parsing from suc-
ceeding. As contributors, gather nodes insert to the error list the names of
non-speci�ed mandatory children (mandatory children whose con�dence
is rated as zero). This information is typically used to inform the user
about missing pieces of information.

• Suggestions list. This list provides non critical information gathered through
the parsing process. For instance, gather nodes would add to the sugges-
tion list all optional children that were not speci�ed. Using this list, ap-
plications could inform about what could be speci�ed, thus helping users
to learn about their options and what can be expressed.

• History list. Each rating provides the list of all the nodes visited before
its contribution. This history list keeps track of the processing path over
the tree is useful at di�erent levels.
First, when a select node picks one of its children as its claim, both the
errors and suggestions lists need to be updated to only re�ect the con-
tributions of the branch that has been selected. For instance, if a user
expresses a request about restaurants, all contributions to the lists made
by the movie branch become irrelevant.
This information is also used for debugging, helping Active programmers
track down which nodes contributed to �nal processing results.

Cardinality

As described above, relationships determine if a child node is optional or manda-
tory. Similarly, relationships are used to de�ne the cardinality of children nodes.
In our case, the cardinality is a boolean attribute of a relationship that speci�es
if the relationships holds a single unique rating or accumulate multiple ratings
over a dialog. For instance, to model that a movie consists of a set of actors,
the relationship is member of that connects the leaf actor to the gather node
movie in �gure 5.14 bears a positive cardinality.

Context management

An important feature of the semantic tree parsing technique is context building
and management. Semantic ratings are persisted in their communication chan-
nels over multiple utterances, allowing users to update, complete or reset the

81

context of their dialog. We de�ne a dialog as a sequence of utterances expressed
by a user to communicate intentions or answer questions. We de�ne a context,
or a session, as a set of data gathered about a user dialog over multiple utter-
ances. In our case, a context consists of ratings stored in communication pipes
that connect the nodes of the semantic tree.

Considering our example shown in �gure 5.14, let us examine what happens
when the following sequence of utterances is submitted to the tree:

1) ��nd comedies in san francisco�
2) �no, get me thrillers instead�
3) �ughhh, no, i will actually be in palo alto tonight�

When the �rst utterance is submitted, leaf nodes genre, city and actor
generate ratings, helping their parent nodes to create their own ratings up the
tree to �nally produce a global rating:

pipe(command, $, command(subject(address(city('san francisco'), zipcode($),

state($)), movie(genre(comedy), actor($))),action(get)), [conf(100)])

When the second utterance is asserted, only the genre leaf node reacts
to update its rating with thriller instead of comedy. An upward sequence of
partial updates propagates up the tree a�ecting the genre, movie, subject
and command nodes. The �nal result is updated with:

pipe(command, $, command(subject(address(city('san francisco'), zipcode($),

state($)), movie(genre(thriller), actor($))),action(get)), [conf(100)])

Similarly, as the third utterance is asserted, a partial update initiated by the
city node triggers an upward cascade of updates to generate:

pipe(command, $, command(subject(address(city('palo alto'), zipcode($),

state($)), movie(genre(thriller), actor($))),action(get)), [conf(100)])

This example illustrates two features of our semantic tree parsing techniques.
First, as already shown previously, the technique gracefully ignores dis�uencies
such as �ughh, no� and skips unknown words such as �i will actually�, �instead �
or �tonight�. Secondly, the system supports partial utterances through a dialog
context. In our example, the second utterance only brings one relevant piece of
information, the type of movie to look for. Leveraging the session context that
is incrementally built and updated as utterances come in, the global parsing
result still contains the full information (city name and movie type).

Disambiguation

Using a context incrementally built over multiple utterances is a powerful feature
that brings many bene�ts and raises interesting problems, one of them being
disambiguation. We have seen in previous sections how ratings are remembered
and updated as user utterances arrive to build up a session context. In the

82

case of select nodes, as utterances are processed and stored, some children may
express ratings baring the same con�dence, leading to an ambiguous situation.

To illustrate our presentation, let us consider the following sequence of ut-
terances sent to the network shown in �gure 5.14:

1) ��nd movies in san francisco�
2) �good, now get me a restaurant�

When the �rst utterance is submitted, all is well and the leaf nodes genre,
city and actor generate and propagate initial ratings, leading to the following
overall rating:

pipe(command, $, command(subject(address(city('san francisco'), zipcode($),

state($)), movie(genre(comedy), actor($))),action(get)), [conf(100)])

Let us examine what happens when the second utterance arrives. Both
restaurants and style leaf nodes react and generate ratings, leading the restau-
rant node to create a rating as well. Since the previous result of themovie node
is still stored in its pipe as part of the context, both children of the subject node
have ratings. Worse, both show the same hundred-percent con�dence. Which
one to pick? There is an ambiguous case that needs to be solved by the select
node. The following paragraphs introduce disambiguation techniques designed
and implemented in our Active-based language processing technique.

Simple strategy : use utterance context The �rst strategy used by select
nodes to disambiguate children consists of testing the age of their semantic
ratings. The idea is to choose the child about which the user talked most
recently.

The age of a rating is given by the age of the utterance that triggered its
creation. Within a dialog, each incoming utterance generates a burst of events
leading to the creation or update of ratings over the semantic tree. As it is
processed, each utterance is tagged with an incremental counter used to order
them over time. The counter is also used to tag ratings, therefore the smaller
the counter, the older a rating is. In the case of disambiguation, if more than
one child have the same con�dence, picking the most recent rating ensures that
we select the most recent topic of the dialog.

In our example:

1) ��nd movies in san francisco�
2) �good, now get me a restaurant�
3) �i am interested in comedies�

As the second utterance arrives, even if both the movie and restaurant
are rated with the same con�dence, the restaurant child is selected because it
is the youngest.

As a dialog unfolds, the role of select nodes is similar to a semantic switch,
deciding which sub-branch is the topic of interest expressed by the user. For
instance, in our example as utterance 3) is submitted, the topic swings back to
the movie branch for two reasons. First, its con�dence would be higher that
restaurants (two children movies and genre have a con�dence greater then

83

zero). Secondly, it is younger than the rating coming out of the restaurant
branch.

To ensure that the age information is carried over through the parsing pro-
cess, both gather and select nodes have to integrate it into their ratings. Ratings
generated by gather nodes are tagged with the age of the youngest rating com-
ing from their children. Ratings that come out of select nodes carry the age of
the selected child.

More complex strategies There are situations where multiple children of a
select node have both the same con�dence ratings and the same age, preventing
the previously described age-based technique from disambiguating. First, we
describe when such situations occur, then we provide a list of techniques and
strategies developed to resolve the ambiguity.

select

gather gather

node

select

gather gather

leaf 1 leaf 2

Shared node Simultaneous claims

Figure 5.15: Ambiguous networks

Two semantic network con�gurations lead to such situations (see �gure 5.15).
First, contributors to a select node may have a common child at a lower level
in the network. In such case, any rating generated by the common child will
update the age of ratings all the way up to the children feeding the select node,
this defeating the age-based disambiguation technique. As an example of this
scenario, let us consider the following sequence of utterances:

Dialog 1:
1) ��nd movies in san francisco�
2) �book me a restaurant as well�
3) �actually, I'll be in sunnyvale�

As shown in previous sections, utterances 1) and 2) do not lead to any problems.
The third utterance triggers a reaction from the city leaf node, cascading to
the address gather node, shared by both the restaurant andmovie branches.
When ratings reach the select node, they have the same age and may possibly
carry the same con�dence.

The second con�guration involves multiple leaf nodes. If an utterance sub-
mitted to the semantic tree triggers reactions from di�erent leaf nodes, con-
tributing to branches ultimately connected to the same select node, some rat-
ings will have the same age and potentially the same con�dence. Let us describe

84

a con�guration leading to such situation. In the semantic tree of �gure 5.14,
both the movie genre and restaurant style leaf nodes have the word french in
their vocabulary set. The intention is to allow users to talk about french movies
or french restaurants. Now, let us analyze the following sequence of utterances:

Dialog 2:
1) ��nd movies in san francisco�
2) �book me a restaurant as well�
3) �actually, i am interested by a french one�

Utterances 1) and 2) do not lead to any problems. The word french being
shared by two leaves (genre and style), utterance 3) is more interesting. Both
leaves would create a rating, that will percolate up all the way to the top select
node, where multiple children may claim ratings with similar con�dence and
ages.

To solve ambiguous cases, we have developed the following set of strategies.

• Use last choice. In this strategy, when several children cannot be disam-
biguated, a select node repeats its last selection. In the above examples,
the third utterances would be understood as looking for restaurants in
Sunnyvale for Dialog 1 and booking a French restaurant in San Francisco
for Dialog 2.

• Ask the user. Another technique implemented by select nodes is do
make no decision. The node would simply contribute to the error list
(see section 5.2.3 on page 81) to let the application know that the parsing
could not be completed because of an ambiguous case. Typically, the
application would notify the user and ask for more information to help
the system disambiguate.

• Leverage design. Techniques to prevent ambiguous cases can be used
at the design level of semantic networks. For instance, is a and is member
of relationships have a boolean a�ect parent age attribute. If unchecked,
ratings communicated over the relationship would only contribute to the
con�dence, not the age of the overall parent rating. After their process-
ing phase, select and gather nodes will ignore the contribution of children
connected through such relationships when computing the age of their rat-
ings. This feature is useful when a node is connected to multiple branches
that lead to a select node. In the example shown in Dialog 1, the address
node is shared by two branches (movie and restaurant) connected to
a select node (subject). If the two relationships that connect address
to its parents carry an unchecked a�ect parent age, specifying a new city
(such as in utterance 3) of dialog 2 above) would prevent the movies and
restaurant from having the age, therefore allow the subject node to pick
a child using the age-based technique.

• Delegate. The last technique consists of delegating the decision to an
external component. A select node that cannot make a decision can use
the invocation mechanism described in section 5.1.2 on page 59 to call
out for help and hold its decision until a result comes back. Using this
loose connection allows Active developer to externalize the disambiguation
process into a separate extension or Active Ontology.

85

Semantic validation

In addition to providing a solution to the problem of ambiguities, the Active-
based language processor includes a technique to deal with semantic validation.
Semantic validation consists of checking, as early as possible in the process, if
data structures constructed over the semantic network could be completed and
conveys a meaningful content. Using the invocation mechanism described in
section 5.1.2 on page 59, gather nodes can ask external providers, or advisers,
to complete missing �elds and validate their ratings before communicating them
to their parents.

Data structure completion Nodes of type gather provide the ability to au-
tomatically �ll missing values from partial utterances. For instance, the gather
node address consists of a zipcode, a city name and a state. As discussed
earlier, each leaf node is instrumented with specialized processing bits to create
ratings out of incoming utterances. For instance, when processing the utterance
:

��nd movies in Miami�

the address nodes produces:

address(city('miami'), zipcode($), state($))

Before communicating its rating to its parent, the gather node can ask a special-
ized processing element, that uses database of all know US cities, to �ll missing
slots. In addition to �lling missing slots, the adviser can access the suggestions
and errors information lists (see section 5.2.3 on page 81) to provide additional
information to be communicated to the user. For instance, the above example
speci�es the city of Miami. Since there are multiple cities named Miami in the
US, the adviser will pick the most likely city in its list to automatically �ll the
zipcode and state slots. It will also populate the parsing suggestion list with
details about other instances of Miami.

Meaningful content In addition of �lling out missing slots, advisers also
validate the information contained by gather node ratings. For instance, when
processing the utterance :

��nd movies in Miami, Alaska�

A gather node may ask an adviser to verify if the data provided is valid. The
behavior to correct the information is encoded in the adviser. For instance, in
the example above, an adviser would pick the most likely state for the city of
Miami, and use the suggestion list to provide the user with relevant suggestions
about possible states with cities named Miami.

Implementation

All features previously described about Active-based parsing with semantic net-
works have been implemented. Figure 5.16 shows the language processing exam-
ple presented in this chapter in the Active Editor. This section �rst introduces
fact de�nitions used to implement the information �owing up the semantic tree.

86

Figure 5.16: Language processing sample in Active Editor

Follows a high level description of major rules and concepts designed to be the
infrastructure of parsing semantic networks. We then describe a collection of
Active Editor wizards that provide high-level user interaction and automati-
cally generate Active rules and concepts. Finally, we provide more details on
the Active Server extension designed to facilitate and improve performances of
language parsing.

Fact de�nitions First, we give a list of four relevant fact de�nitions used to
model the data structures for the parsing.

First, formatted facts are used to report incoming utterances expressed by
the user. De�nition 7 (item a) describes the elements of the structure as being
a tuple with two elements: the utterance to parse and a list of attributes. The
main variables are:

• $sentence: The utterance to parse. (i.e. ��nd movies in palo alto�)

• $session: Session identi�er giving the context of the utterance to process.

87

• $user: Identi�er of the user who expressed the utterance.

• $modality: The type of sensor that created the utterance. (i.e speech rec-
ognizer, instant message or email)

• $conf: Con�dence of the source (expressed by modality) about the accuracy
of the sensed utterance. (Ranging from 0 to 100)

• $action: What to do once the parsing tree has generated a structure out of
the utterance. Current possibilities are: reset to erase the session context
and restart a fresh dialog; parse to stop after parsing and notify the user
with raw parsing results; act to pass the parsed structure to another Active
Ontology in charge of actually undertaking actions expressed by the user.

Standardizing facts used to report utterances allow the Active Ontology in
charge of language processing to process all utterances similarly, regardless of
their origin.

A second type of standardized facts hold nodes and leaves semantic ratings.
All information about the current parsing state and context information is kept
in a collection of semantic ratings produced by the hierarchy of nodes. As seen
in de�nition 6 on page 73, semantic ratings are represented as communication
channels carrying a value and a set of attributes from a source node to a desti-
nation node. To implement complex features and behaviors detailed in previous
sections, more attributes have been added to the list provided in de�nition 6. In
addition to a con�dence level, the attribute list contains the age of the rating,
its history (a list that of all nodes that contributed to its value) and a session
identi�er. The session identi�er is a unique value used to allow multiple simulta-
neous sessions, driven by di�erent users, to be executed over the same semantic
network.

De�nition 7 Semantic tree fact de�nitions
a) input($sentence, [session($session), modality($modality), action($action), con�-
dence($conf), user($user)]))
b) pipe($child_name, $parent_name, $value, $attribute_list)
c) voc($semantic_value, $owner, $values)
d) session($id,[user($user),word_index($windex),utterance_index($uindex)])

Third, leaf nodes use a vocabulary set and a list of separators stored in vo-
cabulary facts. Vocabulary facts (see item c in de�nition 7) are triplets bindings
a semantic value, the node that owns it and a list of possible token values. For
instance, the movie genre drama owned by the node genre would be represented
as:

voc(drama,genre,[drama,dramas],[])

Note that this approach where the semantic rating generated by a leaf node is
decoupled from the de�nition of the syntactic values allows us to extend our
system to multiple languages. For instance, extending the movie genre to sup-
port additional languages:

voc(drama,genre,[drame, drames, drama,dramas],[])

88

Finally, specialized facts are used to store a user session (see item d de�nition
7). Each user session is unique identi�ed and carries information about the user
name, the number of tokens and the number of utterances processed within the
session.

Rules and Concepts This section shows how Active application design has
been leveraged to express conditions and actions to turn a semantic model into
an execution environment.

Several types of concepts have been designed. As presented earlier, each
node of the semantic tree is an Active concept, instrumented with speci�c rules
to implement its role (leaf, select or gather node). In addition, two specialized
types of concepts have been created for house keeping tasks. First, similarly to
the chart parser technique presented in section 5.2.2, a specialized concept has
been designed to process incoming utterances. Its role is to tokenize arriving
sentences and inject individual words into the leaves of the semantic tree through
dedicated communication channels. Secondly, at the top of the semantic tree
a specialized concept is in charge of processing the �nal semantic rating. It
checks the �nal rating for errors and dispatched it to another Active Ontology
for processing and execution.

Each type of concept is �tted with processing rules. Rules use facts shown
in de�nition 7 to react and contribute to the processing as words come into
the system. To brie�y illustrate these techniques, let us look at two simple
examples.

Rule name : Leaf (movie genre node)

Condition

Store.checkEvent(pipe_leaf(source, genre, word($WORD),
[sessionid($SID), utid($UTID), index($INDEX),
user($USERID),con�dence($CONF)]))

&& Store.checkFact(voc($SEMANTIC_WORD, genre,['$WORD'],$))

Action

Store.removeFacts(F("pipe(genre,$,$,[sessionid($SID)])"));
Store.writeFact(pipe(genre,movie,genre($SEMANTIC_WORD),
[sessionid($SID), utid($UTID), origin(nl), index($INDEX),user($USERID),
history([item($ConceptName,[word($WORD),

type(leaf), value($SEMANTIC_WORD), utid($UTID)])]), con�dence($CONF)]));

Figure 5.17: Leaf node rule

First, �gure 5.17 shows how the leaf in charge of claiming movie genres ex-
presses a rule in charge of testing if an incoming token belongs to its vocabulary
set. Note how the condition uses a compound rule to match the incoming token
with an element of the vocabulary set using the WORD variable. Also note that
the variable SID is used to pick ratings only within the space of a unique user
session, allowing a semantic network to host multiple sessions simultaneously.

As a second example, let us examine in �gure 5.18 how the restaurant node
gathers information coming from its children. The condition is a compound
expression whose �rst member is a checkEvent acting as a guard. The condition
triggers when any source writes in to pipe whose destination is restaurant. On

89

Rule name : Gather (movie node)

Condition

Store.checkEvent(pipe($,restaurant,$,
[origin(nl), sessionid($SID), history($), utid($), user($USERID)])) &&

(
Store.checkFact(pipe(address,restaurant,$address,

[sessionid($SID), history($HISTORY_address), utid($UTID_address),
index($INDEX_address), user($USERID), con�dence($CONF_address)]))

&& Store.checkFact(pipe(mealhelper,restaurant,$mealhelper,
[sessionid($SID), history($HISTORY_mealhelper), utid($UTID_mealhelper),
index($INDEX_mealhelper), user($USERID), con�dence($CONF_mealhelper)]))

&& Store.checkFact(pipe(pricerange,restaurant,$pricerange,
[sessionid($SID), history($HISTORY_pricerange), utid($UTID_pricerange),
index($INDEX_pricerange), user($USERID), con�dence($CONF_pricerange)]))

&& Store.checkFact(pipe(style,restaurant,$style,
[sessionid($SID), history($HISTORY_style), utid($UTID_style), origin($),
index($INDEX_style), user($USERID), con�dence($CONF_style)]))

)

Action

//Updates history
var local_hist = F("[item($ConceptName,[type(gather)])]");
local_hist.addList(HISTORY_address);
local_hist.addList(HISTORY_mealhelper);
local_hist.addList(HISTORY_pricerange);
local_hist.addList(HISTORY_style);
// Computes the semantic rating
NL.gatherInit();
NL.gatherAddCandidate(address,CONF_address, 1, UTID_address, INDEX_address,
0, false, false);
NL.gatherAddCandidate(mealhelper,CONF_mealhelper, 1, UTID_mealhelper,
INDEX_mealhelper, 0, true, false);
NL.gatherAddCandidate(pricerange,CONF_pricerange, 1, UTID_pricerange,
INDEX_pricerange, 0, true, false);
NL.gatherAddCandidate(style,CONF_style, 1, UTID_style, INDEX_style, 0, true,
false);
// Computes results
NL.gatherProcess(true, true);
var local_score = NL.gatherGetScore();
var local_ut_index = NL.gatherGetIndex();
// Creates the resulting fact
var local_result = CF("restaurant");
local_result.addElement(address);
local_result.addElement(pricerange);
local_result.addElement(style);
// Noti�es parent(s) with results
Store.overwriteFact(F("pipe(restaurant,subject,"+local_result+",
[sessionid($SID), history("+local_hist+"), utid("+ local_ut_index + "),
origin(nl), index(0), con�dence("+local_score+"),user($USERID)])"),

F("pipe(restaurant, subject,$,[sessionid($SID), utid($), origin(nl),

user($USERID)])"));

Figure 5.18: Gather node rule

90

the action part of the rule, �rst the history is updated to contain all children
as having contributed. Secondly, an Active Server extension (see section 4.3.2
on page 53) encapsulates as a pre compiled library the logic that computes the
overall con�dence of the gather node. Finally, as all the elements of the rating
to produce are created, the node updates its own channel to notify its parent
about its new contribution.

Finally, a wizard has been developed to encapsulate the logic of a leaf node
in charge of dealing with dates.

Wizards and Extensions This paragraph presents extensions to the Ac-
tive software suite developed speci�cally for semantic network-based language
processing.

Figure 5.19: Leaf node Wizard

First, a collection of Active Editor wizards have been developed to auto-
matically create concepts and rules that instrument the nodes of the semantic
network. For instance, to add a leaf node from the Active Editor, developers
right-click on the graph pane area of the Active Editor to select among the list
of available wizards. Under Language Processing, they can select Insert NL
Leaf to pop up the wizard shown in �gure 5.19. After asking for the name of
the node to create, the wizard invites programmers to select and con�gure the
leaf node logic. As the Active programmer hits the Finish button, the wizard
analyzes the information to automatically create the concept, rulesets and rules

91

that implement the logic of the node. Wizards can be activated any time to up-
date the information and re-generate the attached rules. Note that wizards also
automatically update the Active code when relationships that connect nodes of
the semantic tree are modi�ed. In addition to the leaf node, Wizards have been
developed to manage date, gather and select nodes. Finally, two specialized
wizards can be used to create pre-processing (tokenizer) and post-processing
(connect to the top of the tree to manage �nal ratings) concepts that provide
house-keeping tasks around the semantic parsing tree. Using this collection of
Active Editor wizards, a full blown Active-based language processing application
can be designed, implemented and deployed by drag-and-drop graphic modeling
and wizard-based con�guration steps.

Secondly, on the server side, a language processing extension has been de-
signed to encapsulate some functionalities and expose them for use in both rule
conditions and actions. For instance, the action code snippet shown in �g-
ure 5.18 uses the NL extension to compute the overall con�dence of the rating
a gather node produces. As long as the language processing extension is de-
ployed, the functions NL.gatherInit, NL.gatherAddCandidate, NL.gatherProcess and
NL.gatherGetScore can be used anywhere in any rule action code. Active Server
extensions also contribute to enhance the condition part of rules. Extensions
can be written to not only use uni�cation to look for matching facts in the
local store but also use the same mechanism to search other data sources. An
extension was written to connect to any JDBC compliant database to provide
Active applications with access to large data sets. For instance, in the language
processing domain, large vocabulary sets can be stored in RDBMs.

Language processing test console A tool to test Active Ontologies imple-
menting semantic networks has been designed. The Language Processing Test
Console has two main functionalities : interactive test and automated regres-
sion test. The interactive test mode (see �gure 5.20), allows Active Developers

Figure 5.20: Language Processing Test Console - Interactive

92

to interact with semantic networks under development to quickly test features
and parsing techniques. A second use of the console (see �gure 5.21) o�ers the
ability to run regression tests against a semantic network. A regression test is
a ordered sequence of entries. There are two types of entries : utterances and
reset. Each utterance entry contains an index, a utterance and an expected
parsing result. Reset entries are used to clear the parsing context. Running
the test consists of sequentially executing all entries of test. When a reset en-
try is reached, the tool asks the semantic network to reset its state. When an
utterance entry is reached, its utterance (set of words) is sent to the seman-
tic network for processing. Then, the console waits for the parsing results and
compares it with the expected parsing result store in the test entry. As the test
unfolds, response time and status are collected and graphically shown to the
Active programmer. Regression tests are XML �les that can be easily created,
loaded into the test console and run against a semantic network.

Figure 5.21: Language Processing Test Console - Regression Tests

Results

This section summarizes the results of the semantic network approach to lan-
guage processing. First, an overview of what was achieved presents the main
characteristics of the technique. Follows, a discussion compares and contrasts
our technique with interesting and relevant work in the �eld of language pro-
cessing. Note that a performance evaluation in terms of response time of this
technique is presented in section 7.3.2 on page 182.

Features As the second Active-based methodology presented in this docu-
ment, the semantic network approach to language processing is more complete
than the simple chart parser approach introduced in section 5.2.2. The tech-
nique not only de�nes how to implement an AI component within the Active
framework, but it also comes with a collection of Active Editor wizards and
Active Server extensions. The main features of our implementation are:

• Ease of programming. Using Active Editor Wizards, it is possible to create
a language processing application without writing any code. Programmers
model the application domain of their application by creating nodes using
the palette of Wizards for language processing and graphically connect
them with relationships.

93

• Multiple detection techniques. Leaf nodes in charge of detecting words
and generate seminal ratings o�er multiple detection techniques includ-
ing testing values against a vocabulary (either locally or remotely from a
database), using regular expressions or separators (pre�xes and post�xes).

• Robust parsing. The approach described implements a robust parser that
ignores unknown words that may come from dis�uencies or erroneous
speech or handwriting recognition.

• Context management. A dialog context is incrementally built and kept in
the semantic tree. Users can issue multiple incomplete utterances to drive
a dialog, provide more details or switch the topic of interest.

• Built-in suggestion and error lists. As the parser integrates information
from the user, it generates lists to inform about its processing state. Two
lists are generated: an error list to inform about missing mandatory el-
ements and a suggestion list providing information about what could be
speci�ed.

• Built-in disambiguation. A built in disambiguation technique leverages
context and user preferences to make decisions about the intentions of
users.

• Reference resolution. A reference resolution mechanism allows external
components to help validate the semantic ratings generated by nodes of
the semantic network.

• Flexibility. Changes to language domain de�nition and processing are
easily and graphically done through the Active Editor. There is no code
to edit, system to shut down, nor program to recompile. Existing node of
the semantic network can be updated, new ones created using Wizards.
The topology of the network can also be updated, existing nodes re-wired,
new ones connected, the Active Editor will automatically generate the
underlying code.

• Multi-lingual support. One the domain model is constructed for an ap-
plication, it is an easy matter to add additional vocabulary to support
multiple human languages; the domain model is completely reused for
each. Contrast this with grammar-based approaches, where for each hu-
man language accepted, the grammar must be re-written from scratch,
with little reuse.

Discussion

Now that it has been more formally described, it is interesting to compare our
Active-based language processing technique with similar research e�orts.

In some aspects, our approach is similar to partial or shallow parsing tech-
niques. The idea consists of parsing small chunks of incoming utterances instead
of fully matching them with a grammar. This technique is useful for human
driven applications and information retrieval from heterogeneous data sources
[1][31]. Shallow parsers lead to robust designs but have to be coupled with sep-
arate components that will assemble results into a speci�c application domain.

94

For instance, the Smart Sight tourist assistant[86] system couples a grammar-
based shallow parser with a semantic engine to provide post-processing and val-
idate the output of the parser with the application domain. These approaches,
while supporting the robustness required for practical use, start with a general
language grammar and then try to �t domain and semantic knowledge into this;
our Active Semantic Network approach conversely starts with the domain model
and lays a light-layer of language over this. Our approach produces a network
that is easily understandable from a programmer's point of view, and can be
easily ported to multiple human languages with maximal reuse.

Perhaps the closest work to our approach is described in [36], in which a sys-
tem called AAOSA provides a �exible framework for building natural language
interfaces based on networks of interconnected agents. Similar to our approach,
a semantic network is created and various nodes produce claims about incoming
information. Like Active, in addition to a domain-oriented Semantic Network
approach, AAOSA can also be used to implement grammar-based parsing if
desired [35]. Our approaches di�er in several respects:

• At an algorithmic level, Active processes utterances by parsing, validat-
ing, and producing a semantic representation in a single pass through the
semantic structure, whereas AAOSA uses multiple passes to achieve the
same result, �rst interpreting claims and then validating and generating
a semantic representation;

• AAOSA is a specialized tool suitable only for natural language inter-
pretation (producing a structured representation of an input utterance),
whereas Active is a general-purpose AI framework that provides an un-
derlying rule-engine framework and numerous AI methodologies;

• Thanks to the previous point, during the language interpretation pro-
cess, as Active interprets an utterance, it seamlessly blends and integrates
context and dialog management, business logic (for error validation and
partial structure completion), and service delegation into one seamless
process. For example, as a city is mentioned by the user (e.g. �make
reservation at Il Fornaio in san jose�), external services are delegated to
lookup the zipcode and state for the city, ambiguities are resolved (e.g.
San Jose, CA or San Jose, NM) by leveraging context and dialog, and
numerous validations (e.g. missing time, state changed so city context
becomes invalidated) are processed through business �ow logic.

It is Active's deep integration of data modeling, language interpretation, context
and dialog management, service delegation, and anticipation and execution of
logic �ows that makes Active truly unique. Not only are all these capabilities
important for constructing assistant applications, they bleed into each other,
such that individual capabilities such as language interpretation rely on other
methodologies as part of what they do.

5.2.4 Conclusion

This section has presented two language processing techniques implemented
in the Active framework. For both techniques, we presented the underlying
design and the actual implementation using Active rules and concepts. This

95

important step validated our approach and helped us design and implement the
Active framework software suite. Language processing is an important element
of intelligent assistant applications. Now that we have implemented language
processing in Active, the next step is to connect a user interface to allow users
interaction with the system. As explained in our introduction, an Active pow-
ered system consists of a community of loosely couple services, including user
interfaces. The next section introduces how Active combines a group of services
to form a user-centric application.

5.3 Service Management

5.3.1 Introduction

As presented in our introduction (see section 1.3.4 on page 11), an Active-based
system consists of a set of services working with one or more Active Ontologies
in charge of core reasoning tasks. So far, we have presented how to use Active
Ontologies to create a language understanding component. In this section, we
will explain how Active Ontologies are used to manage a community of services.

First, we introduce the notion of service oriented architectures (SOA), then
we extend it with the concept of delegated computing. We continue by show-
ing how these notions have been designed and implemented within the Active
framework. To illustrate these concepts, various user interfaces will be inte-
grated as services that collaborate with the language understanding module
built in section 5.2.3 on page 71. The section ends with a presentation of re-
sults, a discussion and a conclusion.

Service oriented architectures

Software applications designed around an SOA architecture consist of a commu-
nity of loosely coupled services, whose collective actions implement the overall
behavior of the system.

service
registry client

service

6

Figure 5.22: Three steps for an SOA invocation

Loosely coupled services are components that do not need to know about
each other at design time. They nevertheless comply with some standard that
allows for their discovery and remote invocation. Therefore, as long as they
comply with invocation standards, services can be written in any programming

96

language, run on various hardware platforms and even be distributed over mul-
tiple hosts. For discovery, services can advertise their capabilities and speci�c
communication details into public registries. Clients can query registries at
runtime to discover and invoke available services that suit their needs.

Figure 5.22 summarizes the three steps involved in service interactions within
an SOA system. Step one, a service provider registers with a service registry to
advertise its capabilities. Step two, a client contacts the service registry to �nd
a service provider that suits its needs. Finally, step three, the client invokes a
method on the service provider to perform the required operation.

As with any software architecture, this approach has certain advantages and
drawbacks. The main bene�ts of such approach are:

• Reusability. Services can easily be shared and reused across multiple ap-
plications.

• Integration. Modern software tends to be composite and therefore requires
large integration e�orts at both design and implementation phases. In-
tegration is the process of linking heterogeneous, sometimes distributed
applications in order to implement a global behavior. Leveraging SOA
standards and best practices facilitates integration at all levels, ranging
from communications protocol to higher level concerns such as security
and reliability.

• Design �exibility. Components of a complex application can be shared, re-
placed, upgraded or even removed with a limited impact on other modules
of the system.

• Widely available technology. For twenty years, the CORBA[78] platform
has been used to design and implement service-based applications. During
the last decade, the explosion of the Internet and XML technologies has
been driving the growth of web services[13]. This technology uses SOAP
for inter-service communication, WSDL to describe services capabilities,
UDDI for service registry and HTTP as the transport mechanism. More
recently, web 2.0 technologies called for lighter HTTP-based protocols such
as REST or XML-RPC to expose backend systems and services over the
Internet. This wealth of technologies is available and mature enough to
be used as the foundation of service-based architectures.

• Robustness. SOA architectures facilitate the design of backup policies
where a main application is in production while a backup system serves
as an on-line mirror, ready to take over should the primary service fail.

There are nevertheless tradeo�s to be taken into consideration when building
SOA systems:

• Performance. The process of data marshaling (converting all data �ow-
ing across and application into a shared standard) has an impact on the
overall performance of the system. Additionally, SOA applications are of-
ten distributed over a network, adding transmission times to the overall
response time.

97

• Interoperability. Since all components must comply to a common stan-
dard for data exchange, communication protocols, and service de�nitions,
some speci�c implementations may not be fully compatible with others.
Therefore, SOA applications always require thorough interoperability tests
before deployment.

• Security. Connecting multiple heterogeneous systems over a network,
sometimes the open Internet, calls for carefully designed security policies.

SOA for user-centric applications

As explained in our introduction, service oriented architectures play a key role
in our approach to design user-centric intelligent assistant applications. In this
context, we categorize relevant services into fours classes: sensors, e�ectors,
information sources and processing agents.

• Sensors: Any service in charge of observing the environment and report in-
formation to the Active Server for processing. This category encompasses
a wide range of service types: user interfaces, where users type, click and
manipulate graphical objects; speech, gestures or handwriting recognizers
fall into this category. In also includes any type of environment sensor
able to measure values such as temperature, humidity, speed or accelera-
tion. Finally, services able to read emails, receive instant messages or text
messages also belong to the sensor category.

• E�ectors: Services that allow Active to send a signal back to the environ-
ment, or to otherwise act on the environment. For user communication
services, there is a symmetry between sensors and e�ectors. A user in-
terface that prints information, a service able to send emails, instant or
text messages are all e�ectors. Additionally, powered systems or robots
are e�ectors as well.

• Information sources. Many instances of intelligent assistants are in charge
of retrieving data from information sources. These applications are typ-
ically designed as wrappers able to extract content from databases, the
Internet (through web scrapers), or any custom data source.

• Processing agents. Complex applications may need to delegate processing-
intensive tasks. For instance, a message may have to be encrypted before
being sent out by an email e�ector service. Symmetrically, incoming mes-
sages may need to be decrypted. Another example would be a translating
service, transforming messages from one language to another.

In the context of user-applications, an SOA approach brings speci�c advantages:

• Multi-modality. Users express commands and intentions through multiple
modalities. For instance, they can type, talk, gesture or write to com-
municate goals to an assistant. In an SOA approach, each modality is
managed by a speci�c service, all contributing their information to the
Active Server for processing.

98

• Ubiquitous. Intelligent assistants need to be ubiquitous. For instance,
in the scenario presented in the introduction of this document, the user
communicates with his assistant from various locations: his home, his
o�ce and his car. The set of services used by the assistant to interact
with the user changes over time and location. Dynamic services detec-
tion and selection is therefore required, and greatly facilitated by an SOA
architecture.

Delegated computing

At this point, we have presented SOA and how we intend to use this design
approach in the context of Active-based applications. The present section in-
troduces delegated computing, a technique designed to fully leverage the power
of service-based architectures.

The �exibility of SOA designs comes with many challenges, one being the
dynamic management of services. Since services can be dynamically registered
and discovered, multiple providers of the same service function may be available
at the same time. What should happen then? When a client has multiple
candidates for invocation, which service should be invoked? Our design tackles
this problem by using delegated computing, a technique where clients delegate
the selection and invocation of services to a broker.

service
registry

6

broker

service 1

client

service 2

Figure 5.23: Delegated Computing

Figure 5.23 shows a design where SOA is enhanced with the concept of
delegation. First, service providers register with the service registry to advertise
their capabilities. When a client needs a service, it would not directly contact the
service registry to get a provider and perform an invocation. Instead, it delegates
the invocation to a broker. The broker implements all the logic required to
get the list of suitable service providers, select the most appropriate candidate,
perform the invocation, sort responses and report the results to the client. When
invoking a service through delegation the client describe what is needed, instead
of who to call.

Delegation cannot be implemented without normalization. When using a
broker, clients make requests for a speci�c type (category) of service to call,
not for a speci�c provider. This notion implies that service categories have to
be de�ned and normalized. The de�nition of a service category consists of four
elements. The name of the category, the input parameters to provide when
requesting an invocation, the output parameters returned after processing and
a list of attributes used to qualify service providers. Therefore, the service

99

registry does not provide a �at list of service providers, but organizes them into
well de�ned categories to which providers need to comply.

In the context of delegation, service registration requires more information
than simply a name and an address. Upon registration service providers provide
the following information:

• Category and quali�ers. First, service providers specify the category of
service where they belong with its own unique identi�er. Optionally, a list
of qualifying attributes may be added to further de�ne the service. These
would for instance be the response time, the cost, and the reliability, and
could be used by the broker to make decisions about the best provider to
pick.

• Data transformation In the context of delegated computing, third party
services are registered under a category that de�nes a normalized set of
input and output parameters. These services were not designed to comply
to any speci�c API, therefore their proprietary API is not likely to match
the one imposed by the category under which they register. Therefore,
service providers need to provide translation information used to convert
data, back and forth, from category normalized data into the speci�c
service provider API.

• Data transmission protocol. To perform an invocation with a service
provider, the broker needs to have information about the communication
protocol to use. For instance, if a service is exposed using SOAP, a WSDL
�le needs to be provided. Similarly, CORBA, RMI or REST technologies
require information about the protocol and address where the service can
be contacted.

The broker performs delegated invocation as a three-step process. First, it re-
ceives a requests from the client about the invocation to perform. The caller
provides invocation details expressed in the normalized category de�nition, in-
cluding the type of service to invoke, input/outputs parameters and timeout.
Optionally, callers can provide additional information to help the broker decide
on the speci�c provider to call. Such details would include expected reliability,
response time, cost or any relevant attribute that describes a provider.

At the second processing step, the broker contacts the service registry to get
a list of all service providers able to provide the functionality expressed by the
caller. Using additional information, the list is trimmed and sorted so that best
candidates appear on top. Meta-agents can additionally provide third party
recommendations about the value of speci�c service providers.

Next, the broker actually invokes service providers. Using the list of best
candidates, the broker invokes service providers using one of two techniques:

• Sequential : Providers are called in sequence, until one of them successfully
responds. This would for instance be used to send a noti�cation message
to a user. If several service providers are able to send email, the message
should be delivered only once.

• Parallel : Providers are concurrently invoked, and their responses are ag-
gregated into a result set. This technique is used when a caller needs to
retrieve information from multiple data sources.

100

Finally, the last step consists of reporting results to the caller. If providers
cannot report results within a time limit provided by the caller, the broker
reports a timeout. If providers manage to provide answers and results within
the timeout period, the broker reports a single result for sequential invocations,
an aggregation of results for parallel invocations.

Using the delegation technique and a broker, clients are shielded from the
complexity of heterogeneous APIs and various communication protocols. It
allows for service providers to be dynamically removed, added, upgraded and
selected without having to change anything on the client side. In the context of
our work, delegated computing is important feature. For instance, it is used for
modality management. As an Active Ontology in charge of language processing
reaches a conclusion, it needs to communicate some information to a user. The
language processing component does not have to know about speci�c modalities,
therefore it delegates the task of notifying a user to another Active Ontology
that uses delegation to pick the best modality to deliver the message.

5.3.2 Active implementation

This section presents how service management through delegation is imple-
mented in the Active framework. First we show how Active Ontologies are used
to create a service registry and a broker. We then brie�y describe Active Editor
plugins and Active Server extensions created for that purpose, before discussing
our results. To illustrate the content of this section, we will connect various
user interfaces to the language processing module presented in section 5.2 on
page 64.

Service categories

To implement delegation of services in Active, the �rst element to design is a
service registry. The registry is more than a �at list of services, it de�nes a
set of service categories where actual service providers can register. A service
category consists of a name, input parameters and output parameters. Input
parameters de�ne the data structure a service registered under the category
will need when invoked, output parameters de�ne the data returned by the
service after processing.

In the context of Active, service categories are modeled with concepts and
relationships. For instance, �gure 5.24 shows how a user noti�cation service
category can be represented. The top root concept of the structure represents
the category and bears its name, notify user in our example. Relationships of
type is category member de�ne invocation parameters of the category. Inward
relationships represent input attributes (a request structure in our example),
outward relationships point to return parameters of services that belong to the
category (response structure in the example). Input and output parameters
are represented with complex structures of concepts connected with is member
of relationships, already used in the context of language processing applications.

The uni�ed approach of the Active platform allows programmers to use the
same technique to model both service categories and the spoken domain of an
application. This unique innovative design brings multiple advantages. First,
the comprehensive tools used to create language processing semantic networks

101

notify user

status

response request

attribute message

Figure 5.24: User Noti�cation Service Category

can be leveraged to model input/output parameters of service categories. De-
velopers can create tree-like hierarchical structures made out of nodes and rela-
tionships to model the normalized API of a service category. Secondly, the same
structure de�nitions can be referenced and shared across all Active Ontologies
without rede�nition. For instance, if a service category requires an address as
part of its API, one can directly make a reference to the address node de�ned
in the semantic network.

Service providers

The previous section introduced the notion of service categories modeled with
concepts and relationships. This section explains how Active models actual
service providers registered as service category providers.

Invocation of service providers Service providers are called using the Ac-
tive invocation mechanism exposed in section 5.1.2 on page 59. Therefore, a
registered service provider exposes a rule whose condition is compliant with the
de�nition 2 on page 59.

De�nition 8 Service provider invocation fact

invoke($operation_name,$input_params,
[provider_name($provider_name), category($category),
tx_id($tx_id), timeout($timeout)]))

In addition to the basic set of invocation attributes, service providers expose
two additional attributes (see De�nition 8):

• provider_name : The unique name of the service provider

• category : The category in which the service is registered

102

Note that exposing these two additional attributes does not prevent service
providers from being called directly, without using the broker.

API normalization and communication protocol In addition to a rule
whose condition complies with the Active invocation technique, each service
provider provides two sets of information: data about API transformation, the
second about its communication protocol.

normalized request proprietary request

S
erivce Invocation

request delivery

D
ata

N
orm

alization

D
ata

M
arshallin g / Transfer

proprietary response normalized response
XML-
RPC

REST
HTTP

SOAP
HTTP

FTE

FTE

Broker

response delivery

D
ata

Transfer

S
ervice Logic

Service Provider

Figure 5.25: Data Normalization and Transfer

As explained earlier, service providers have their own proprietary API that
is unlikely to match the normalized API imposed by the category under which
they are registered. Therefore, service providers need to provide translation
information used to transform data �owing in and out the normalized API used
by clients. To implement this mechanism, an Active Server extension provides
a transformation engine designed to convert a source fact into a destination
fact using a conversion chart. Similarly to XSLT, the new destination fact is
produced based on the source fact which is not a�ected by the operation. A
simple fact transformation language (FTL) has been designed and is used to
instruct the fact transformation engine (FTE) on how to create a destination
fact based on the content and structure of a source fact. Using the FTE, service
providers register two snippets of FTL code, one to convert input parameters
from normalized requests into proprietary service requests, another one to con-
vert proprietary service responses into normalized output parameters.

Once a request has been converted into the right format using the FTE, it
has to be delivered to the service provider. Symmetrically, responses need to
be communicated back from the service to the Active Server. To perform this
operation the Active Server needs to support the communication protocol used
by services providers to expose their functionalities (SOAP, REST, XML-RPC,
etc). The SOAP protocol is becoming the de facto standard for SOA applica-
tions, therefore an Active Server extension has been developed to implement
SOAP-based data exchanges over HTTP. Its core consists of two converters, a
Fact-to-SOAP (serializer) for outgoing messages and SOAP-to-Fact (deserial-
izer) for incoming responses.

Figure 5.25 shows how the combination of the FTE and the Active Server
SOAP extension allow us to implement the normalization and communication
aspects of delegated computing.

103

Service Invocation through brokering

Now that we have presented the mechanisms provided by the broker, let us
describe the high level interface used by caller to use it. As shown in �gure 5.23
on page 99, in the context of delegated computing, clients do not contact service
providers directly, but delegate the selection and invocation of providers to a
broker. The method used by clients to communicate with a broker is very similar
to the invocation technique. To request the delegated invocation of a service
type, a caller asserts a fact of the form show in de�nition 9, where:

• category_name : The name of the service category to invoke

• input_params : Standardized input parameters de�ned for the category

• tx_id: Unique transaction id for the delegation

• timeout: How long should the caller wait until the delegated invocation is
considered to have failed

• policy: Informs the broker on how to invoke selected service providers.
(sequential or parallel)

• broker_information_list : An attribute list providing any information the
broker can use to select the most suitable service providers

De�nition 9 Delegation fact

delegate($category_name, $input_params, [tx_id($tx_id), timeout($timeout), pol-
icy($policy), $broker_information_list]))

Once the delegation fact is asserted by the caller, a process similar to the
invocation technique unfolds. Figure 5.26 shows the main steps of the delegation
process:

1. The caller creates and asserts a delegation fact that speci�es the type of
service to invoke, the input parameters and delegation attributes such as
a unique transaction identi�er, a timeout. Additionally, a list of attributes
can be provided to help the broker select the best provider.

2. The broker exposes an Active rule whose condition �res upon assertion of
delegation facts compatible with de�nition 9. The rule action starts the
brokering logic by getting the list of all service providers registered with
the category to invoke.

3. Based on the policy speci�ed by the caller, the broker invoke selected
service providers.

4. Service providers are invoked and provide requested results.

5. The broker gathers results and noti�es the caller.

104

Caller Broker

Tim
e

Generates unique transaction id
Asserts delegation fact
Schedules timeout fact

Service providers

Service Z
Provides service

Service Y
Provides service

Service X
Provides service

• Rule Condition Fires
• Gets the list of service providers

o Looks into specified category
o Sort and trim the list of

candidates
• Calls selected service providers

using the invocation technique

• Gathers results from service
providers

• Notifies caller

Rule Result Callback Fires
Perform some processing
Cleanup the delegation context

Figure 5.26: Delegated Invocation Timeline

Wizards

To facilitate the use of the technique presented in this section, two Active Editor
wizards have been implemented.

First, a wizard has been created to create a service category. When activated
the wizard asks the user about the name of the category to automatically create
the top concept of the category model.

The second wizard allows programmers to register SOAP service providers.
Through a sequence of interactive screens, the wizard invites Active users to
describe each step of the service registration. First, the wizard asks for the
name of the service to register and the category where it belongs. Since the
wizard deals with SOAP services, a pointer to a WSDL �le (local �le or URL)
is also required. The Wizard automatically retrieves and introspects the WSDL
�le to gather relevant information about the service to register. The user is then
invited to pick an operation among the list of methods described in the WSDL
�le. Next, the wizard reads the input parameters of the category where the
service is to be registered and the input parameters of the selected operation as
de�ned in the WSDL �le. Through an interactive mapping tool (see �gure 5.27),
the Wizard invites the user to map the normalized input parameters de�ned by
the service category into the proprietary de�nition retrieved from the WSDL �le.
The same mapping operation is then performed for output parameters. The last
step is a test screen, where Active programmers can test the service registration
by actually invoking with sample requests. Finally, the wizard uses the collected
information to automatically create an Active concept, instrumented with all
rules necessary for the service to be invoked through the delegation technique
described in this section. The wizard can be re-activated any time to update

105

Figure 5.27: SOAP Service Registration Wizard (Mapping step)

the service provider de�nition.

5.3.3 Practical example

Prototype

The method and implementation de�ned so far in this chapter have been used
to connect user interfaces, as services, with the language processing Active On-
tology shown in section 5.2.3 on page 71. The system allows users to submit
utterances for parsing, and get a response as a parsed view of the utterance.
The application, which consists of two Active Ontologies and a set of services, is
our �rst Active-based system as initially envisioned in section 1.3.4 on page 11.
This system has been designed and implemented as a test tool for both language
processing and delegation of services.

106

Figure 5.28: Service Management Active Ontology

To realize this prototype, an Active Ontology in charge of service manage-
ment has been created to implement service delegation. The Ontology models a
noti�cation service category, that takes a request structure a input and returns
an acknowledge structure. Figure 5.28 shows the service management Active
Ontology loaded in the Active Editor.

For our example, two service providers have been registered under the noti-
�cation service category:

First, the language processing test console (see section 5.2.3 on page 92)
interacts with the system through SOAP messages. The console is used in two
modes. First, an interactive mode allows Active programmers to quickly type
and send utterances for processing. Parsing results are sent back to the console
through the delegation mechanism. The console can also be used to run regres-
sions tests, consisting of sequences of utterances and expected parsing results.
Regression tests are an important component of the design and development of
Active-based systems (see section 6.1 on page 122).

The second service provider connected to the system is an Active Server
extension able to connect to the Yahoo Instant Messenger (YIM) network. The
extension provides an Active impersonation on YIM with whom anyone with an
account can start a dialog. The extension reports incoming utterances to the
Active Server fact store for processing, and reports results as a service registered
under the noti�cation service category.

In addition to modeling a service category, the delegation Active Ontology
implements a broker, in charge of processing user noti�cation through dele-
gation. Figure 5.29 describes the sequence of events unfolding for each user
request:

• An utterance is submitted from the user interface (step 1). In the case of
any interface able to communicate with SOAP, the utterance is reported as
a fact asserted in a fact store (step 2) through the built-in SOAP extension
exposed by the Active Server. For more proprietary interfaces, such as the
YIM, a speci�c Active Server extension has been implemented to connect
to the YIM and create facts out of incoming events. Facts asserted to

107

Active Server

Active Ontology :
Language Processing

Active Ontology :
Delegation

Facts Store

SOAP Extension

Instant Messenger Extension

4

3

5

 Any SOAP Compliant UI

 Yahoo Instant Messenger TM
Console

1

6

2

1

6

Figure 5.29: Prototype Architecture

report an utterance are standardized in the de�nition 7 on page 88, item
d. Therefore, the Active Ontology in charge of language processing will
process all utterances similarly, regardless of their origin.

• The Active Ontology in charge of language processing reacts (step 3) and
produces a parsed command that takes into account the contribution of
the new utterance. The results are asserted as facts to the Active Server
store intended to trigger the Active Ontology in charge of delegation (step
4).

• The assertion of the language processing Active Ontology triggers the no-
ti�cation broker of the delegation Active Ontology to decide which service
to used to deliver the parsing results to the user (step 5). In this example,
the broker uses the simplest technique, which consists of using the same
modality as the one used to deliver the utterance. The actual delivery
of the response is performed by specialized extensions that know how to
communicate with speci�c interfaces registered as service providers (step
6).

5.3.4 Conclusion

After introducing the concepts of service oriented architectures and delegated
computing, this section describes how these techniques are implemented using
the Active platform. It de�nes the messages exchanged among components
and the extensions, plugins, and wizards developed to ease the registration and
invocation of services. The section also describes a practical example, where an
Active-based system uses delegation to dynamically select the means to deliver
information to users.

108

5.4 Process Management

5.4.1 Introduction

We have so far presented how Active is used to perform natural language pro-
cessing and manage a community of services. In order to build full applications,
the next step is to provide a component that encapsulates the core logic of the
system. In user-centric applications such as intelligent assistants, process man-
agement is used to model the dialogs, or sequence of actions, to undertake when
accomplishing complex tasks on behalf of the user.

This section starts by introducing work�ow programming, tools and imple-
mentations of the technique. Next it presents how work�ows are implemented in
the context of the Active framework. Finally, a conclusion discusses the results
and applications of Active-based work�ows.

Work�ow programming

The most natural way to implement process modelling with Active is through
work�ow-based programming. This technique can be easily and elegantly imple-
mented using the event-rule paradigm at the core of the Active system.

Start Test

Execute

Wait

Call Out

Execute Execute

Execute Execute

Execute Execute

Execute Execute

Execute

End Test

Flow State
• Active nodes
• Variables

Workflow

cond2

cond1

cond3

cond2

cond1

fail - timeout

success

timeout

success

Figure 5.30: Work�ow modeling

A work�ow models a process as a collection of basic work units, whose exe-
cution sequence are represented with links (see �gure 5.30). Work units can be
considered as basic building blocks that can be combined to model complex ac-
tivities, activated along directed links. Work units are connected to the network
with incoming and outgoing directed arcs called links. Incoming links are use
to convey an execution signal that trigger the activation of a work unit. When
a unit has performed its task, it noti�es all units connected through outgoing
links.

Work�ows are executed by a work�ow engine, in charge of creating, running
and hosting multiple instances of a given work�ow model. Each instance of the

109

�ow holds its own work�ow state that consists of the list of active work units
and instance variables. Instance variables are key-value pairs used to share
information among work units.

Typically, work�ows are made of the following work unit types:

Start. Wait for an event to trigger the creation and execution of a new instance
of a work�ow. The trigger condition can come from the outside world, or
be internally sent by another work�ow. Start units can be connected to
one or more units to be activated.

Execution. Once activated, some processing task is performed. Any type of
processing can be performed by execution activities, for example process-
ing the �ow state variables, connecting to a database, reading a �le or
sending an email.

Wait. On activation, wait units suspend their activity until a speci�ed event
occurs. There are two classes of outgoing links from a wait unit. If the
expected event occurs before a given timeout value, a success link points
to the next work unit to activate. On the other hand, if the event does
not occur within the speci�ed timeout, a timeout link directs execution to
a dedicated work unit.

Callout. Work�ows are designed to be integrated with external components
through communication standards such as SOAP, RMI or CORBA. Call
outs are mechanisms where an external component is invoked through
an RPC technique. There are multiple ways out of a callout work unit
depending of the status of the transaction (success, failed, timeout). Each
situation triggers the activation of speci�c outgoing links to activate the
appropriate work unit in charge of ongoing operations.

Test. Test work units provide conditional branching by holding a condition to
each one of their outgoing links. When activated, conditions are evaluated
and only the links whose conditions are valid will be activated.

End. Work units designed to terminate the �ow execution, cleaning all �ow
state variables.

Work�ow-based programming is a mature technique. On the theory side,
work�ows have been well studied and can be modeled as petrinets[59, 76] for
simulation, validation and performance predictions. On the application side,
many popular tools, products and standards are used in various industries where
work�ows are required. Many products o�er visual programming graphical in-
terfaces, allowing developers and non-developers to model business processes as
work�ows by dragging, dropping and connecting work units. In the industrial
automation space, the Labview[40] system is widely used to model processes
interacting with equipments to control. In the software industry, leveraging the
rapid growth of service oriented architectures, multiple work�ow techniques are
used to orchestrate the actions of loosely coupled components. The BPEL[66]
speci�cation has emerged as the de facto standard and is the basis of several
work�ow system implementations[54].

110

Work�ow-based process modeling with Active

Work�ows are well suited to be the programming paradigm used to model pro-
cesses within the Active framework.

First, the structure of a work�ow consists of processing elements connected
by oriented links. Since an Active Ontology is made out of concepts and re-
lationships, work�ow modeling naturally �ts with the philosophy and develop-
ment tools of the Active framework. As described previously, existing work�ow
tools o�er a graphical programming IDE allowing users to model applications
by dragging, dropping and connecting processing elements. This approach is
aligned with what Active is trying to achieve, by easing the development of
complex systems though high-level graphical tools.

Secondly, the underlying processing core of work�ows is similar to the core
of the Active rule-base engine. Work�ow work units have conditions that can
become valid anytime to trigger their execution. Such event-based paradigm
can elegantly be modeled and implemented as a set of Active rules. Some work
units (wait, callout) use timeouts to control subsequent actions. The Active fact
store natively supports a life span of facts, thus providing a way of implementing
timeouts. Finally, work�ow instances have their own data space, where their
state and local variables are kept. Another feature naturally �tting the Active
framework, where a series of facts can be used to persist the state of an on going
work�ow instance.

Third, call out work units of �ows can leverage the invocation and delegation
mechanisms of Active. In addition of calling speci�c services using the Active
invocations techniques, work�ows callouts use the Active-based delegation tech-
nique to provide on the �y selection of service providers.

Finally, in the context of user-centric applications, work�ows are excellent
means of modeling user activities and interaction dialogs. Since multiple work-
�ow instances can run at the same time, each having its own data space, multiple
users can use the system simultaneously, each having their own private sessions.

5.4.2 Active implementation

This section presents how an Active technique to model processes as work�ows
has been designed and implemented. First, the data structures to hold the state
of a �ow instance is introduced. Then, we show how work�ow work units have
been designed and implemented with Active concepts and rules. Finally, we
present the set of Active Editor wizards designed to model and run complex
work�ows with Active through wizard activation and graphical editing.

Work units

Work units are implemented as concepts, instrumented with specialized rules.
Figure 5.31 show the structure of the rule controlling the execution of a work

unit. The condition waits for a �ow_pipe facts whose destination matched the
name of the work unit to trigger its execution. Once its task performed, the
work unit passes control the next element of the �ow by asserting a �ow_pipe

with its name as the source and its successor as the destination.
The activation signal sent between work units is implemented as �ow_pipe

facts (see de�nition 10, item a) asserted as events. When a work unit has �nished

111

its execution, it passes the control to its successor by asserting a �ow_pipe fact,
using its name as the source and the name of the work unit to activate as the
destination. Since �ow_pipe facts are asserted as events, they do not remain in
the fact store for more than one evaluation cycle.

De�nition 10 Standardized facts for work�ow modeling

(a) �ow_pipe($source, $destination, [�owid($�d)])
(b) �ow_var($var_name, $value, [�owid($�d)])

Instance variables of a work�ow are also implemented as Active facts (see
de�nition 10, item b). Each value is a triplet, with the name of the variable, its
value and the unique instance of the �ow where they are stored.

Note that all �ow_pipe and �ow_var facts are tagged with a unique �ow
instance identi�er, allowing multiple instances of a work�ow to simultaneously
be executed and hosted on an Active server, each instance having its own data
and state space.

Rule name FlowWorkUnit

Condition Store.checkEvent(�ow_pipe($source, workunit_name,

[�owid($�owid)]))

Action
perform the actions of the work unit
....

Store.writeEvent(pipe(workunit_name, destination_name,

[�owid($�owid)]))

Figure 5.31: Work unit structure

Using this technique, di�erent types of work units have been implemented
with Active rules and concepts:

Start Start elements de�ne entry points that will trigger the execution of a
process. Unlike other work units, start elements do not wait on work units
to be activated, but on any event happening on the fact store. Whenever
an event validates the condition, the start element creates a unique process
instance identi�cation and passes the control to all connected work units.
Note that a work�ow can have multiple entry points.

Execution Execution elements provide general purpose processing at any point
of the work�ow. Execution nodes contain Javascript code to be executed,
before passing the control to the next element of the �ow.

Wait Wait nodes suspend the execution of the work�ow until a speci�c event
occurs. The even to wait for is represented as a uni�cation fact pattern.
Therefore, any fact asserted to the store that matches the pattern, triggers
the wait node which then resumes the work�ow execution by passing con-
trol to all connected work units. A timeout can be speci�ed to undertake
action when an awaited event does not occur.
This node has two types of outgoing links, represented as two types of

112

Active relationships. Relationships of type �ow event ok are used to acti-
vate work units when the awaited event actually occurred. Relationships
of type �ow event timeout point to work units to activate when the event
does not occur within the speci�ed timeout period.

Invocation Invocation nodes provide asynchronous calls based on the Active
invocation (see section 5.1.2 on page 59) or delegation (see section 5.3.2 on
page 104) mechanisms. Once activated, the work unit gathers parameters
from the local work�ow instance variables and uses them to invoke (or
delegate) external processing. Once results are received, they are asserted
as new work�ow instance variables.
Alike the Wait work units, di�erent types of links control the execution
�ow out of invocation units. Relationships of type �ow event ok are used
to activate work units after successful invocation. Relationships of type
�ow event timeout point to work units to activate when the invocation
did not provide any results within a speci�ed timeout period. Finally,
�ow event failed point to work units to activate when the invocation fails
due to an unexpected problem.

Test Test work units provide conditional branching. Test nodes hold a condi-
tion, based on any processing of instance �ow variables, for each outgoing
link. Upon activation, it evaluates the link conditions to route the execu-
tion �ow on speci�c branches.
Two behaviors have been implemented: unique dispatch and multiple dis-
patch. For the unique dispatch technique, branches are evaluated until one
of them succeeds. In the multiple dispatch case, once a branch succeeds,
the evaluation process continues to potentially active more than one par-
allel execution path. For both techniques, if no condition is met, a default
link is activated. Similarly to Invocation and Wait units, multiple types of
outgoing links are represented with classes of Active relationships.

End End elements de�ne end of a process execution. Once activated, an End

unit cleans up all the work�ow instance related information.

Note that our implementation does not have explicit fork and merge elements.
Work units can be the source of multiple links, thus activating multiple parallel
execution paths. Symmetrically, any work unit can be the destination of mul-
tiple links, therefore working as an execution control merge. To activate work
units with multiple incoming links, the work�ow Active-based implementation
supports two policies: conjunctive activation or disjunctive activation. Con-
junctive, or synchronized, activation requires all incoming links to be activated
for the activation of a work unit. Disjunctive, or loose, activation only need one
of the incoming links to be activated to trigger a work unit execution.

Active Editor wizards and Active Server extension

As with other Active methodologies, this technique has been encapsulated into
a set of interactive Active Editor wizards and Active Server extensions allowing
programmers to graphically model complex processes without writing any Active
code.

First, a collection of work�ow-related Active Editor wizards have been cre-
ated, allowing for the creation of each work unit type. Each wizard contains

113

Figure 5.32: Work�ow Active Editor Wizard

a sequence of interactive screens, designed to for Active users to con�gure the
work�ow steps to create. As the wizard is closed, an Active concepts and all
required rules and rulesets is automatically created and added to the current
Active Ontology. Similarly, a set of specialized Active relationships can be used
to connect concepts and model the execution path of the work�ow. Figure 5.32
show how the Active Editor is used to interactively model an invocation work
unit.

Additionally, an Active Sever extension extends the target scripting language
primitives so that Active programmers can read and write work�ow instance
variables from their code snippets.

5.4.3 Evaluation

We propose to evaluate the Active-based work�ow along three axes. The goal
of the evaluation is to see how the Active system, at its current stage of de-
velopment and feature set, compares with existing work�ow systems and their
functional de�nitions. First we assess how �exible our approach is in terms
of modeling work�ows. Then, we compare the technical and user experience
aspects of our system, to �nally provide some information about the pure per-
formances of our system.

Modeling

In his reference paper, Aalst [77] describes work�ow modeling techniques as a
list of work�ow design patterns. We propose to go over each pattern and analyze
if and how it can be implemented with the Active-based work�ow technique.

114

Pattern 1 (basic) : Sequence - supported.
This is the simplest pattern, which consists of sequentially passing control
among work units.

Pattern 2 (basic): Parallel split - supported.
A single thread of control splits into multiple independent threads of con-
trol. As described previously, any work unit of an Active-based work�ow
can be connected to multiple work units and thus create multiple parallel
execution �ows.

Pattern 3 (basic): Synchronization - supported.
A point in the work�ow where multiple parallel branches converge into
on single thread of control. This pattern corresponds to the conjunctive
activation technique described in the previous section.

Pattern 4 (basic): Exclusive choice - supported.
A point of the work�ow where control is conditionally passed to one single
branch. This is the unique dispatch behavior implemented by the Test

work unit of the Active-based work�ow technique.

Pattern 5 (basic): Simple merge - supported.
A point where multiple alternative branches merge without synchroniza-
tion. This situation assumes the alternative branches never execute in
parallel. This pattern corresponds to the disjunctive activation technique
described in the previous section.

Pattern 6 (advanced): Multi-choice - supported.
A point where, based on conditional processing, a number of branches are
chosen. This is the multiple dispatch behavior implemented by the Test

work unit of the Active-based work�ow technique.

Pattern 7 (advanced): Synchronizing merge - not supported.
During a merge, the system should make sure that candidate branches
are not executed twice. Each branch that leads to a merge should be
considered as a critical section whose execution needs to be forbidden
until the merge has taken place.

Pattern 8 (advanced): Multi merge - supported.
A point in a work�ow process where two or more branches reconverge
without synchronization. If more than one branch becomes activated,
possibly concurrently, the activity following the merge is started for ev-
ery activation of every incoming branch. This is a simple, naive default
behavior of the Active-based merge technique.

Pattern 9 (advanced): Discriminator - not supported.
A point that waits for one of the incoming branches to complete before
activating the subsequent activity. From that moment on, it waits for all
remaining branches to complete and ignores them. The default merging
behavior of our approach implements pattern #8.

Pattern 10 (basic) : Arbitrary cycles- supported.
A point in a work�ow process where one or more activities can be done
repeatedly. In our model, relationships can point back to work units, thus

115

creating loops. Note that the number of iterations can be stored as �ow
instance variables and the exit condition of the loop modeled with a Test

work unit.

Pattern 11 : Implicit termination - not supported.
A given subprocess should be terminated when there is nothing else to be
done. In other words, there are no active activities in the work�ow and no
other activity can be made active. Our model only supports explicit ter-
mination using the End work unit. However, adding implicit termination
of a �ow execution could be done by analyzing the state of the work�ow
through a set of specialized Active rules.

Pattern 12 : Multiple instances without synchronization - not sup-
ported.
Within the context work�ow instance, multiple instances of an activity
can be created, new threads of control are spawned. Our implementation
does not support this feature natively, but a solution could be found by
representing the work unit to replicate in a separate work�ow and trigger
multiple instances of it.

Pattern 13 : Multiple instances with a priori design time knowledge
- supported.
If the number of instances is known at design time, the work unit can
simply be replicated at design time in the Active Editor.

Pattern 14 : Multiple instances with a priori runtime knowledge -
not supported.
Event if this feature could be supported by triggering a sub�ow, there
would not be any ways of synchronizing sub�ow instances with our Active-
based technique.

Pattern 15 : Multiple instances without a priori runtime knowledge
- not supported.
This pattern is not supported for the same reasons as pattern #14.

Pattern 16 : Deferred choice - not supported.
A point of the work�ow where one execution branch is chosen over many
others. The execution of unselected branches is stopped.

Pattern 17 : Interleaved parallel routing - not supported.
A set of work units can be run in any order but cannot be executed at
the same time. The current implementation of the Active-based work�ow
technique does not support synchronization of work units that belong to
parallel execution branches.

Pattern 18 : Milestone - supported.
The activation of a work unit depends on the state of a work�ow instance.
The work unit is only executed if a certain milestone has been reached
which did not expire yet. In our implementation, a Wait work unit enables
the modeling of this pattern.

Pattern 19 : Cancel activity - not - supported.
An enabled work unit is disabled. The is currently no way of canceling an
activity that triggered its execution.

116

Pattern 20 : Cancel case - supported.
A running instance of a work�ow is canceled and completely removed. In
our Active-based implementation, the complete state of a �ow instance is
stored as a series of facts, all tagged with the unique instance identi�er.
Therefore, canceling the execution of a work�ow consists of removing all
facts tagged with its identi�er.

Pattern S
ta
�
w
a
re

C
O
S
A

In
C
o
n
ce
rt

E
a
st
m
a
n

F
L
O
W
er

D
o
m
in
o

M
et
eo
r

M
o
b
il
e

A
ct
iv
e

1 + + + + + + + + +
2 + + + + + + + + +
3 + + + + + + + + +
4 + + +/- + + + + + +
5 + + +/- + + + + + +
6 - + +/- +/- - + + + +
7 - + + - + - - -
8 - - - + +/- +/- + - +
9 - - - + +/- - +/- + -
10 + + - + - + + - +
11 + - + + - + - - -
12 - - + + +/- + - -
13 + + + + + + + + +
14 - - - - + - - - -
15 - - - - + - - - -
16 - + - - +/- - - - -
17 - + - - +/- - - + -
18 - + - - +/- - - - +
19 + + - - +/- - - - -
20 - - - - +/- + - - +

Figure 5.33: Modeling patterns comparison chart

Figure 5.33 is a comparison chart showing how di�erent work�ow engines
implement the twenty patterns de�ned by of Aalts [77]. The table has been
extended with a new column that summarizes our analysis of the Active �ow
system. The result shows that our implementation compares favorably with
most work�ow engines. All basic patterns (1 to 6) are supported. As with
most work�ow engines, our implementation does not support spawning of new
threads to provide parallel execution the same work-unit (patterns 14 to 17).
The remaining patterns are either already fully or partially supported (patterns
8, 10, 13, 18 and 20). For non supported patterns (7, 9, 11, 12 and 19), our
detailed pattern analysis shows that our approach allows for three of them to
be implemented.

117

Feature set

In addition to work�ow modeling capacities, the literature provides a list of ma-
jor implementation features provided by work�ow systems[21, 18]. This section
enumerates major characteristics of work�ow management systems for compar-
ison with the Active-based technique.

Process modeling and scripting language The process modeling language
of our approach has been described and evaluated in the previous sections. The
scripting language is used in execution work units, designed to provide general
purpose processing as the actions of a work�ow unfold. In our case, the scripting
language is Javascript. The language has been selected for its popularity and
easy integration with the underlying layer of the Active Server which is entirely
written in Java.

Client/Server Since this work�ow technique is based on the active frame-
work, it naturally implements a client/server paradigm. The server being the
Active Server, the clients being any components (including the Active Editor)
connected through public APIs (SOAP or RMI).

Resource invocation If our approach allow for resource invocation through
the Active invocation and delegation, we do not provide resource management.
Resource management provides constructs such as resource pools, reuse and syn-
chronizations. Examples would be database connections, EJB or large system
�les.

API languages As part of the Active framework, our work�ow system sup-
ports three API languages.First, at the highest level, Execution work units are
snippets of code to be executed to perform general processing as the �ow exe-
cution unfolds. Choices of languages are Javascript and Java, enhanced with all
available Active Server extensions, especially the process management extension
o�ering methods to access �ow instance variables. Secondly, at a lower level,
for speci�c domains, new Active Server extensions may have to be developed.
Such extensions are based on the Active Java SDK, API that provides all basic
classes and interfaces required to write extensions to the Active platform. Fi-
nally, reporting events to a work�ow is done through the public SOAP, RMI or
REST APIs exposed by the Active Server.

Interoperability with external components Built-in Active Server ex-
tensions exist for SOAP, email and REST integration with external component.
Any proprietary communication protocol may be added by creating a dedicated
Active Server extension.

Event signaling Events can be reported through the external public SOAP,
RMI or REST APIs of the Active Server, or internally by asserting events into
the fact store.

118

Role/User administration There is no notion of AAA (Authentication, Au-
thorization and Accounting) security in the current implementation of the Active
Server. Users dot not require to be authenticated, anyone with an Active Edi-
tor can connect to any Active Server. In addition, there is no authorization, all
functionalities are open to anyone. There is no notion of roles either (i.e. ad-
ministrator, user), nor access control lists. Finally, there is no security logging
gather information about who did what on the system.

Test tools There are currently no test tools dedicated to work�ow manage-
ment within the Active framework. Our �ows have been simple enough to be
tested directly as part of the overall application where they belong.

Process tracking Simple process tracking is currently done in two ways.
First, the Active Console allows for querying of based �ow related facts (see def-
inition 10 on page 112) providing all necessary information about �ow instances
and their state. This information could be leveraged to created a graphical rep-
resentation of the state of a �ow. Secondly, log �les are generated by the Active
Server as �ow processing unfolds. Analyzing the content of the log �les, in real
time, allows programmer to track and monitor �ow activities.

Transaction coordination/recovery Our work�ow approach does not sup-
port atomic transactions. The actions of work units cannot be undone (rolled
back) in case of a �ow failure. Since the current implementation of the Active
framework does persist all of its states into databases, recovery after catastrophic
failures is not guaranteed.

Performance

This section provides an high level performance evaluation of the Active-based
work�ow technique. A more in depth performance evaluation of the Active
system and the methodologies presented here is given in section 7.3 on page 175.

Since our goal is to model processes that drive the dialog and high-level
actions of user centric applications, our focus is more on �exibility than pure
processing performance. Our system should nevertheless be responsive enough,
exhibiting an overall response time below 15 seconds[60] to provide a tolerable
experience for users.

In the case of Active-based work�ow execution the performance depends on
three factors. First, the frequency of evaluation cycles determines how often
work units are checked for activation. By default, the Active Server evalu-
ates each Active Ontology ten times per seconds or every 100 [ms]. Assuming
that evaluating rules in charge of testing and running work units is faster than
100 [ms], our work�ow execution will progress by ten steps per second. In
our context, each step of the �ow is an action to undertake as part of a user
driven dialog. Typical actions are message formatting, data retrieval, condi-
tional branching or user noti�cations. Therefore, spending 100 ms to decide
which action should be executed next and notify the user does not have a sig-
ni�cant impact on the user experience.

Secondly, the overall performance of a work�ow depends on the tasks to
perform, especially the code snippets speci�ed in execution work units. The

119

current implementation allows programmer to use either Javascript or Java to
de�ne processing logic. For complex tasks that require structured code and
performance, a good practice is to encapsulate it in an Active Server extension
and call it from execution work units. It keeps the work�ow simple, separates
business logic of the application from its execution sequence and allows for
optimization and reuse of functionalities.

Finally, intelligent assistants rely on external data to make decision or re-
trieve information, often in a mobile or web environment. This situation may
create slower response time and need to be taken into account when designing
the �ow. In our case, external services are asynchronously invoked using the
Active-based delegation mechanism. This technique allows us to keep the work-
�ow running and reactive, to respond to more events and react to a timeout
event should the external service fail or not respond in time.

Our prototypes presented in chapter 6 on the next page are all driven by
work�ows designed with the technique described in this section. Their evalu-
ation sections show in details that work�ow are designed to be fast (less then
100 [ms] per step) and do not have a signi�cant impact on the overall response
time of the system.

5.4.4 Conclusion

This section describes how to model, deploy and execute processes as work�ows
with the Active framework.

Following the ontology-based philosophy of Active, processes are modeled
with facts and relationships. Concepts represent work units, or tasks, whose
activation and execution is controlled by the relationships among them. At
runtime, multiple instances of a work�ow model can be run simultaneously,
each within their own space. The state of each instance is represented as Active
facts. This technique has been crystallized into a set of Active Editor wizards
and Active Server extensions, which allow Active users to graphically model,
deploy and run work�ows without writing low-level code.

A comparative analysis of both the modeling and feature set aspects of
work�ows validates our approach. A list of reference work�ow patterns shows
that our approach supports most work�ow patterns. In terms of feature set,
our implementation possesses most technical elements, but does not provide
industry-ready requirements such as security, high performance, scalability and
tolerance to critical failures.

Finally, the performance and feature set of our process modeling tool ful-
�lls the requirements imposed by our user-centric applications, where �ows are
modeled to execute user-driven actions.

120

Chapter 6

Applications and Prototypes

This chapter could have been titled �putting it all together�. It presents a basic
method to build end-to-end Active-powered applications and describes how it
was used to design, implement and evaluate three prototypes. Each prototype
features all components and techniques described so far : language processing,
process modeling and service management.

The three prototypes implemented and evaluated cover di�erent application
domains. First, we developed an assistant designed to help travelers gathering
information using mobile devices. Historically, initial use-cases and scenarios
that helped de�ne early Active work were based on a mobile assistant designed to
help users on the move. This �eld provided to be rich enough to encompass most
of our research, implementation and practical goals. As our early implementa-
tion progressed, this choice was validated by a strong interest from commercial
partners. In parallel, a second prototype implementing an assistant helping sur-
geons in the operating room has been created. The motivation for this second
project came from the expertise and core research of the VRAI Group at EPFL,
whose focus consists of providing surgeons with advanced technologies, ranging
from robotics, vision systems and user interfaces. Finally, a third prototype was
designed and implemented as an assistant that helps organize meetings. This
project was undertaken to evaluate our ability to rapidly design and implement
an intelligent assistant system that can handle long-running tasks, as opposed
to the simple request-response interactions of our previous two prototypes. As
meeting scheduling is a popular task within agent-based systems, with this pro-
totype we could directly compare our system with implementations of the same
problem based on other frameworks and technologies.

The chapter starts by de�ning design guidelines used to build our Active-
based applications. It then presents three prototypes in details: a web-based
assistant for mobile users, an intelligent operating room assistant, and an o�ce
assistant that helps organize meetings. For each application, a section provides
an introduction, speci�c goals, detailed implementation and an evaluation to
contrast actual results with initial requirements. A conclusion summarizes the
results and reports conclusions drawn from the prototypes.

121

6.1 Active Application Design

6.1.1 Introduction

This section describes the technique followed to design, implement and test
Active-based prototypes. First, it introduces the guidelines used to help de�ne
the requirements of user-centric applications. It then summarizes the overall
software design of Active-based systems and describe their main components.
Finally, guidelines about system evaluation are provided before a conclusion
summarizing our �ndings.

6.1.2 Application requirements

Active-based applications are interactive systems that provide assistance in spe-
ci�c domains. When designing prototypes, we considered two sets of require-
ments: functionality and responsiveness. This section elaborates on both re-
quirement sets.

Functional requirements

Functional requirements describe what the system provides. Since the user is at
the center of the application, the starting point of the functionality de�nition
consists of a list of requirements, converted into a set of simple scenarios describ-
ing user interaction with the assistant software to build. From the requirement
list and scenarios, the core of the application is typically designed as a set of
three Active Ontologies. (Figure 6.1 shows this design process)

scenario 1

scenario 2
Dialog & Process
Management

Language Processing

Requirement
List

Services & Delegation

Requirements
List

scenario 3

scenario 4

Figure 6.1: From requirements to Active Ontologies

Language processing First, the application domain, in other words what can
be said, is modeled as an Active Ontology in charge of language processing (see
section 5.2.3 on page 71). During this phase, the structure of valid utterances
is designed through a collection of interconnected nodes to build a semantic
network. The logic of high level structures is de�ned with non-terminal nodes,

122

matching rules and vocabulary sets are attached to leaf nodes. For applications
requiring large vocabularies, typically more than 1000 words (see section 7.3.2
on page 182 for details), a database connection and data collection process is
planned. Also, at the end of this phase, a set of language parsing regression tests
are created. The tests are intended validate the language processing component
of the system throughout the development and validation of the application.

Application logic Secondly, the processing logic of the application is de-
signed. Actions and their relationships (i.e. sequential, parallel, conditional)
are extracted from scenarios to model an Active Ontology in charge of running
the dialog and plans undertaken by the assistant (see section 5.4 on page 109).

Services In parallel, as actions are de�ned, a third Active Ontology is mod-
eled to represent service categories and register service providers. This phase
consists of creating, or reusing, services in charge of interacting with the envi-
ronment. Our applications typically have four types of services: user interface,
data source, processing nodes and e�ectors.

User interface. Also drawn from the scenarios, the user interface involves
services. In our applications, the user interface can be a single thick application,
a web page or a combination of services (i.e. speech recognizer, text to speech,
motion tracker) providing input and output interaction modalities. Note that,
from the user point of view, the user interface is the tip of iceberg designed to
hide the complexity of the application through natural delegation of tasks.

Data source services. Data source services are used in information retrieval
applications. For instance, our web-based activities assistant (see section 6.2
on page 127) answers questions such as ��nd me cheap Italian restaurants in
Sunnyvale California�. Behind the scene, after the language processing has
produced a result and a plan is executed, services implemented as web scrapers,
are used to retrieve and combine information from various web sites.

Processing services. Third, processing services encapsulate extensive pro-
cessing needed by the application to get intermediate results. For instance, our
operating room assistant (section 6.3 on page 141), provides a gesture recog-
nition service that takes the trajectory of a hand motion (captured by a 3D
sensor) to convert it into a known symbol.

E�ector services. Finally, the fourth class of e�ector services provide actions
that modify the environment. For instance, the operating room assistant con-
trols a robotic arm that holds an endoscope, as other prototypes are able to
make reservations and send emails on behalf of the user.

Deployment The �nal step consists of deploying all three Active Ontologies
and testing their interactions from language processing, via plan execution to
service invocation. Note that each type of Active Ontology can be designed,
implemented and tested independently.

Responsiveness

An important feature of interactive user-centric systems is its responsiveness,
expressed as the response time to a request. After any user input, depend-
ing on the interaction type, applications need to provide a feedback within an
acceptable time range[80, 17].

123

What is acceptable depends on user expectations, which are based on the
interaction model, modalities and the type of application. Interaction mod-
els can be synchronous (instant messages, thick desktop clients), asynchronous
(email, text messages) or web browser-based. Modalities range from desktop
computers to mobile devices. Finally, applications implement di�erent types
and levels of assistance. For instance, our operating room assistant provides
a very straightforward assistance, with very little delegation. In such case, a
fast response time is expected by users. On the other hand, our web activities
assistant o�ers a deeper level of delegation, involving complex tasks such as re-
trieving information from various remote locations and even performing actual
transactions (such as booking a reservation on behalf of the user). In this type
of application, users do not expect an immediate response and are accepting to
wait more before getting a response to their request.

Even if our goal is to provide response times as short as possible, the range
of acceptable delays is de�ned on an application basis. For web related applica-
tions, Nah has shown that responses should not take more than 30 seconds[60].
However, literature shows that long queries, intermediate feedback should be
provided to acknowledge reception of the query, understanding of the task to
perform or even partial results [38, 67]. For non web-based applications, where
all services and components are local and commands rather simple, such as our
operating room assistant, users expect a much faster response time of about one
second.

6.1.3 Software design

At this point, we have presented the constraints (functional and responsiveness)
taken into consideration when designing Active-based applications. The present
section is more technical and describes the overall architecture of an Active-
based systems (see �gure 6.2). Applications consist of the following software
components:

Core server At the heart of the system, the Active Server hosts and executes
a set of Active Ontologies. Our prototypes are typically made of two sets of
Active Ontologies. First, we incorporate a group of generic system ontologies,
used in all applications to perform basic tasks such as invocation, delegation
and noti�cations tasks. A second set of ontologies, speci�cally designed on an
application basis, provides language processing, dialog and plan management
and service registration and execution.
In addition to hosting and running Active Ontologies, the Active Server uses a
set of extensions. Extensions use an SDK-based plugin mechanism to extend
the capabilities of the server. For instance, extensions have been developed to
provide SOAP or REST communication capabilities. The SOAP extension is
used to connect any service described with WSDL �les, and the REST plugin
has been used to build web-based user interfaces. Active-based techniques, such
as language processing, come with extensions that encapsulate algorithms such
as reference resolution and disambiguation, as well as database connectivity
to store large vocabulary sets. To integrate multiple interaction modalities,
extensions have been designed and implemented to provide email and instant
messenger services. Using the email extension Active applications can read
and send emails using POP and SNMP protocols. Additionally, the instance

124

Active Server

Language Processing

Extensions

Dialog & Process
Management

Services & Delegation

Service
Service

Service

Service

Fact Store

Service

Service
DB

Web Server

Instant
Messenger SOAP

Language
processing email REST

Figure 6.2: Application Design

messenger extension allows Active-based systems to be impersonated as a valid
instant messaging user that can be contacted anytime for a chat-like interaction
dialog.

Community of services The design of Active-based systems is service-oriented.
In this context, the core server deals with a community of services in three
ways. First, it is fed by sensor services listening for user inputs and relaying
any relevant event happening in the application environment. Second, a set of
e�ectors are used to undertake actions such a delivering information through a
user interface or physically impacting the application environment (i.e. robotic
components). Finally, a third class of services work as information sources.
Such sources are used at the end of processing as the data for retrieve to server
a user request (i.e. list of restaurants), or during the core processing for help
(i.e. disambiguation and validation for language processing).

Development and administration tools Finally, being services themselves,
the Active Editor and Active Console can join the community anytime to pro-
vide debugging, testing, tuning and monitoring.

6.1.4 System evaluation

This section provides a set of components to test for the validation of Active-
based applications.

Language processing First, the language processing part of the application
is tested using the regression test parsing tool (see Language Processing Test
Console on page 92). Using the scenarios, a collection of regression tests have
been written and successfully run against the semantic network of our applica-
tion.

125

Functionality The second step consists of testing the functionality o�ered by
the modeled work�ow and the underlying services. This step is currently not
automated. It is done by manually executing all the scenarios, step by step, to
ensure that the data retrieved and presented to the user is valid.

User Interface
Recognizers
Incoming Messages

Sensing Language Processing
Semantic Network Processing
Reference Resolution
Disambiguation

Process Management
Dialog sequencing
Information Retrieval
Message Delivery

Service Management
Invocation
Registration
Delegation

Figure 6.3: Overall response time

Responsiveness Finally, the responsiveness of the �nal system has to be
within the time range speci�ed for the application. The responsiveness, or
response time, of the system is the sum of all components involved in the process.
The whole sequence can be decomposed into four steps.

Sensing In this phase, a user interface gathers user inputs, or a sensor
picks a signal from the environment and reports it to the Active Server. This
is typically very fast, unless a some processing is performed by the sensor such
as image processing or voice recognition. In such case, the processing has to be
taken into account to compute the overall system response time.

Language processing Once an event is gathered from the environment,
the Active Ontology in charge of language processing �res to determine if the re-
ported event generates a new command. Depending on the size of the semantic
network, and the use of external services for semantic validation or disambigua-
tion, this processing time can take a signi�cant time, typically ranging from
one to �ve seconds. (See section 7.3.2 on page 182 for a detailed performance
evaluation)

Process management Once the language processing node has generated
a valid command, the Active Ontology in charge of process execution (or dialog
management) executes the command by calling, sometimes through delegation,
external actuator or information source services. Processes execution are not
intense and require a limited number of simple rules to evaluate. Therefore, they
do not have a signi�cant impact on the overall response time of the system.

Service invocation Across all elements enumerated so far, services may
be invoked. At the sensing stage, a gesture recognition service may be invoked
to transform raw input signals into a know symbol. At the language processing
level, services may be called for reference resolution or disambiguation. At the

126

core of the application, the process management Active Ontology will invoke
services to perform user requests and send out noti�cations.

Services to invoke include user interfaces, data retrieval services to actual
physical devices. Therefore their response time varies greatly and their impact
on the system response time has to be evaluated on a case by case. For instance,
for applications that requires access to online information and services, calling
services will signi�cantly impact the overall response time of the system. On
the other hand, for applications where all services are local, the responsiveness
will not be a�ected by service delegation and invocations.

6.1.5 Conclusion

This section introduces the guidelines followed to design and implement Active-
based applications. First, the design of an application consists of de�ning func-
tional requirements and the expected responsiveness of the system. To crystal-
lize the functional requirements expressed by end-users, a set of scenarios are
created. From these scenarios, three types of Active Ontologies are drawn :
language processing, plan and dialog representation and service management.
Scenarios are also used for user interface design and the de�nition of all under-
lying backend services.

This section also presents the main software components of Active-based
systems, consisting of a core server hosting set of Active Ontologies and a com-
munity of loosely coupled services.

Finally a section provides guidelines about evaluating implementations against
the set of requirements used during the design phase.

6.2 Online Activities Assistant

6.2.1 Introduction

This section proposes to study how natural language queries combined with
context and dialog can improve online activities for mobile users.

As an actual tool for this exercise, we describe the prototype of an assistant
that helps users with online activities. The system interacts using a combination
of natural language and dialog to retrieve information and perform transactions.
Multiple user interfaces (browser, instant messages, email or thick dedicated
client) allow users to express queries in plain English to delegate complex tasks.
For instance, users can use any of the supported interfaces to ask questions:
��nd action movies near san jose� or request actions: �book me a table tonight
at Joe's pizza in Palo Alto�.

The section is organized as follows. First, we describe the goals behind the
design and implementation of this prototype. Then, we present the system re-
quirements. As described in section 6.1 of this chapter, a list of requirements is
translated into scenarios used to implement a set of Active Ontologies, a com-
munity of services and a user interface. The third part of this section presents
the implementation of the prototype in details. The fourth section provides a
two-phase evaluation of the system. First, functional requirements, including
responsiveness, are veri�ed to demonstrate that the Active platform and its
programming techniques can be used to model and implement end-to-end user-

127

centric applications. Secondly, our prototype is compared with other similar
existing systems (Google MobileTM , Ask Mobile) to prove that natural dialog
improves the experience of mobile users for online activities. Finally a conclu-
sion summarizes what was achieved and presents the results of our evaluation.
The conclusion also describes the positive feedback received from the commer-
cial world about our research, and how our prototype is inspiring the design of
a commercial intelligent portal for mobile users.

6.2.2 Prototype goals

This prototype has two goals. First, it is a tool to validate our approach of using
a uni�ed framework, the Active platform, to build applications encompassing
language processing, dialog management and service orchestration. Secondly,
we intend to demonstrate that a combination of natural language and context-
based dialog can improve the way mobile users interact with online information
and services.

Validation of the Active approach The prototype is intended to demon-
strate that an end-to-end user-centric system can be built using the Active
framework. More speci�cally, three aspects of our approach are validated :
methods, implementation and application design. First, the methods described
in chapter 5 to build Active Ontologies providing language processing, dialog
management, process execution and dynamic service invocation are going to
be used and tested in the prototype. Secondly, at the core of the system, the
current implementation of the Active platform is going to be measured and
tested.

On the programmer side, both the Active Editor and Active Console will
be used to edit, deploy and test Active Ontologies. On the backend side, the
Active Server and its extensions will host and run a set of Active Ontologies, to
react and provide valid responses to users within the speci�c functional and time
constraints of the application. Finally, the e�ectiveness of the design approach
introduced in section 6.1 on page 122 will also be put to the test.

Improved mobile user interaction The second goal of the prototype is to
evaluate how mobile users can improve their online-experience through a more
natural interaction scheme. As mobile phones and devices are getting more
a�ordable and powerful, more mobile users need to access online information and
services. To accommodate the speci�c constraints of mobiles devices, limited
screen size, low usability and reduced bandwidth, popular search engines and
portals o�er specialized interfaces.

Adapting the user interface to mobile devices is a �rst step, we believe
that interaction techniques also need to change. The current context-less and
keyword-based paradigm to retrieve online information has limitations. We
propose to use a combination of natural language and context to not only ease
online information retrieval, but also allow users to actually use online services
to execute transactions such as purchasing good or booking reservations. This
goal is aligned with the commercial world, which has determined that mobile
Internet activities show a tremendous potential to not only o�er paying online
services, but also in terms of geolocated and contextual advertising.

128

For instance, a traveler may want to check the status of a �ight from a cell
phone. Instead of getting online from an embedded browser with limited capa-
bilities, we propose to type a message, in plain English such as �Is �ight UAL
1978 on time?�. In return, the user gets not only the requested information,
but added contextual suggestions such as �Flight United 1978 is delayed. Would
you like to �nd a restaurant near the airport?�

The goal of this prototype is to explore new ways of conducting two types
of online activities: information retrieval and transactions over simple context-
based dialogs.

For information retrieval, in addition to conventional use of keywords, we
propose to retrieve data from the web through a natural language-based dialog
with an intelligent information retrieval assistant. Looking for information on
the web using keywords is e�ective for simple navigational queries, where users
are searching for specialized web sites or portals. Chai demonstrated that, in
the �eld of intranet or information retrieval over large sets of data, natural
language and dialog based interaction is faster and more e�ective than menu or
keyword-based queries[87].

Broder[6] showed that in addition to navigational searches, a large number
of queries are transactional. In this case, users do not have a speci�c portal or
web page in mind, but are trying to retrieve a speci�c piece of information o�
the Internet to undertake transactions. By transaction we mean actual actions
such as purchasing goods or booking reservations.

Unlike conventional keyword-based search engines that return URLs lists,
our deeper understanding of the user intentions allows us to provide relevant
and contextual information. In this context, our domain speci�c assistants
perform much better than generic keyword driven search engines. This claim is
demonstrated through a user study presented in section 7.1 on page 161.

In addition to support navigational and transactional interactions, we intend
to support context over simple dialogs. For instance, one might want to express
queries such as: �what thrillers are playing tonight in palo alto?� followed with
�is there any chinese restaurant nearby?�.

Going online using a search engine to answer these questions, sometimes
from a mobile computer or cell phone, may be a challenge. Our intention with
the prototype presented in this section is to provide a tool where such queries
could be expressed as-is, in plain English, using any modality at hand such as
email, instant messages or a regular browser if available. Answers would also
be delivered and formatted to the right modality to �t the devices of the user.

6.2.3 Requirements de�nition

This section presents the requirement list and a sample scenario used to model
the set of Active Ontologies that power the application.

First, let us describe the overall domain of our applications. The system
o�ers information retrieval capabilities covering restaurants, movies, points of
interests, weather and �ight information in the US. Along with retrieved infor-
mation, our system makes pertinent suggestions and can undertake transactions
on behalf of the user. Finally, in addition to retrieving relevant information, our
system is able to perform actual transactions such as booking reservations. The
following list enumerates the main functional constraints of the system to im-
plement:

129

• Information retrieval through dialog-based interaction. The main feature
of our system consists of retrieving online information through queries
expressed in natural language. For instance, queries such as ��nd best
italian restaurants in palo alto�, �what is the weather in miami� or �is
�ight united 981 delayed?� should return relevant information.

• Context management. As queries, or utterances, are submitted to the
system, a context is incrementally built. As presented in section 5.2.3 on
page 71, the use of semantic networks for language processing naturally
maintains a context over the nodes and communication channels of the
network. For instance, the sequence ��nd restaurants in memphis� fol-
lowed by �give me only italians� should �rst return the list of all known
restaurants in Memphis, where the second utterance simply adds a con-
straint to domain and results in a shorter list of solutions.

• Transactions. In addition to retrieving information, the system is able
to undertake transactions on behalf of the user. After getting a list of
restaurants through a query such as ��nd best italian restaurants in palo
alto� , one may wish to actually book a table. Our system should o�er
that functionality by accepting an utterance of the form : �good, book me
a table tonight at Joe's pizza for two people�. Helping users to not only
make a decision based on the most relevant information, but also carry
out actions and transactions is the essence of a good assistant.

• Semantic validation. Semantic validation performs validation of the infor-
mation collected by the system. In the present prototype, two types of
validation are required : addresses and airport names.
In the case of addresses, validation is used to automatically �ll missing or
adjust information slots. For instance, if a valid zipcode is speci�ed, the
city name and state can be known. If a city name is speci�ed, the most
likely zipcode and state should be inferred. If there are multiple solutions,
the user should be noti�ed about the existence of another match.
For airport names, a known three-letter airport acronym should be re-
solved as a valid address, and symmetrically, a known city name should
be translated into the most likely airport code.

• Contextual suggestions. The assistant should not only perform tasks del-
egated by users, but also proactively suggest relevant followup actions.
Such anticipated options, also called golden delights, would for instance
check among restaurants listed which ones o�er online reservation and of-
fer the possibility of performing a reservation on behalf of the user. Other
suggestions would for instance consist of providing a list of nearby �orists
or ATMs when booking a table at an expensive French restaurant.

• User interface. To satisfy the needs of mobile users, the interface needs to
be lightweight and intuitive. At least two modalities tailored for mobile
users need to be implemented: browser-based interface and email-based
dialog.

To illustrate the constraints de�ned above, a set of scenarios has been created
directly with potential end-users of the application. As an example, �gure 6.12
shows a simple interaction sample.

130

Utterance #1 �nd restaurants in palo alto

User feedback Provides a list of restaurants in Palo Alto, CA and provides relevant

suggestions. (bookings, nearby points of interests)

Utterance #2 get me only french ones

Actions: Provides an updated list of french restaurants only and relevant

suggestions.

Utterance #3 book a table tonight at il fornaio at 8:30 pm

Actions: Provides a booking con�rmation and sends an email.

Utterance #4 �nd nearby �orist

Actions: Provides a list of �orists in Palo Alto, CA

Utterance #5 what is the weather in miami

Actions: Provides a forecast and current conditions in Miami, Florida. Also

suggests that there are Miamis in di�erent states.

Figure 6.4: Mobile Assistant Sample Scenario

In addition to functional requirements, performances constraints have been
de�ned for the project.

• Responsiveness. As shown in section 6.1.2 on page 123 of this chapter, the
responsiveness of an application depends on the context and user expec-
tations. This prototype retrieving information from the Internet through
complex queries, users do not expect an answer to come back immedi-
ately. According to the litterature [67, 38, 60], it is nevertheless necessary
to provide feedback (con�rmation, partial results) after 5 to 10 seconds,
even if the overall response time of the system takes more time.

• Large vocabularies. The application needs to deal with large vocabulary
sets and yet provide fast response time. For instance, address validation
and related suggestions, the system needs a list of all major US cities.
Similarly, since we would like to provide answers to utterances such as
�good, book me a table tonight at Joe's pizza for two people�, a large list of
restaurant names also needs to be part of the application vocabulary.

• Multiple users support. The system should be able to serve multiple users
at the same time. In addition of being practical, this feature will allow
us to study how our system behaves as its processing load grows. All
components of the Active framework will be monitored to pinpoint poten-
tial bottleneck and provide suggestions about how to improve the system
overall performance.

6.2.4 Implementation

The assistant described so far has been fully implemented. Figure 6.5 shows
screen captures of the application actually run from a mobile phone emulator.
We choose to evaluate our system via an emulator for practical reasons. First,
it was easy to install the emulator on subjects machines to let them run the

131

evaluation when ever convenient. Also, the emulator was instrumented to log
and time stamp all user requests and responses from tested systems.

The three examples show queries about �nding restaurants, weather forecast
and �ight information. This section details the implementation of the system,

Figure 6.5: Screen shots of the �Active Mobile� application

describing its overall architecture and most important components.

Overall design

The overall design of our application, shown in �gure 6.6, consists of two main
elements : the Active Server and a community of loosely coupled services. At
the center of the system, the Active Server and its extensions host and run
three types of Active Ontologies: language processing, process management
and service management. At the periphery of the system, a constellation of
external services are dynamically orchestrated to interact with users, provide
information and perform processing tasks.

Before talking in more details about individual elements, let us examine
events and processing �ow of the system. Processing usually start from a UI
related service reporting a user utterance. The utterance triggers an evaluation
of the language processing Active Ontology, which produces a command. If
valid, the command is passed to the Active Ontology representing dialog man-
agement, which undertakes a series of actions to respond to the user request.
As the plan unfolds, external services are dynamically selected and invoked to
provide information or run transactions. Throughout the process, UI related
services keep the user informed about results.

User Interface

Leveraging our service oriented design, the prototype supports four di�erent
types of user interface. Thick client interfaces, such as the language processing
test console introduced on page 92, use SOAP messages to submit utterances

132

Active Server
Active Ontologies

Process
Execution Language

Processing

Service
Management

SOAP

Active Server Extensions

Email

Web Server

City
Information

GoogleTM
Movies

Yahoo! LocalTM

OpentableTM

SMTP/POP
server

User Interface
(html + php)

Instant
Messenger

Instant Messenger
Active Impersonation Java Console

REST

NLP

MySQL

HotelsAtAnywhereTM FlightAwareTM

Figure 6.6: Online Activities Assistant Overall Architecture

and display results. Using the Yahoo Instant MessengerTMextension, anyone
with a valid account can interact with our prototype through short instant
messages. Through the Active Server email extension, the system is capable of
checking for incoming emails (using the POP protocol) and deliver information
by responding directly by email to the user. Finally, using the REST API
exposed by the Active Server, a web-based user interface allows interaction
through any web browser.

There are two classes of user interfaces : asynchronous and synchronous.

133

Asynchronous Interaction Direction Time line

#1 What is the weather in sunnyvale? User -> Assistant Start

#2 Thank you, processing your request User <- Assistant Start + 2 [s]

#3 Getting weather forecast in Sunnyvale, CA User <- Assistant Start + 3 [s]

#4 Five day forecast in Sunnyvale, CA
Today: fair, temperature 60 F
Monday : sunny, temperature 70 F

....

User <- Assistant Start + 5 [s]

Synchronous Interaction Direction Time line

#1 What is the weather in sunnyvale? User -> Assistant Start

#2 Thank you, processing your request User <- Assistant Start + 9 [s]

Getting weather forecast in Sunnyvale, CA

Five day forecast in Sunnyvale, CA
Today: fair, temperature 60 F
Monday : sunny, temperature 70 F

....

Figure 6.7: Asynchronous vs Synchronous interaction

Asynchronous interfaces can receive information asynchronously, at any time,
from our application. The top table of �gure 6.7 shows the sequence of messages
when using an asynchronous interfaces, where the assistant sends four separate
messages as its processing takes place. In our prototype, both the instant mes-
senger and thick SOAP-based client allow for asynchronous messaging.

Synchronous interfaces cannot receive messages asynchronously, they can
only receive information as a synchronous response to a request. The lower
table of �gure 6.7 represents a synchronous interaction, where a single message
is delivered as the result of an explicit request. The web-based interface of our
system is synchronous.

A note on the last modality o�ered by our system : email messages. Use
of email is asynchronous by nature, it is nevertheless treated as a synchronous
modality by our system. It would not be practical to receive four separate email
messages as a response to a simple request. Therefore, our system waits until
all information is retrieved before delivering the response email message.

The implemented prototype dynamically picks the interface to use when
sending messages to the user using the delegation technique described in sec-
tion 5.3.3 on page 106. The current selection algorithm is very simple: when
the system needs to deliver information to a user, it picks the modality used by
the user when the last utterance was received.

Language processing

The front line of our application is the Active Ontology in charge of language
processing. It has been implemented on the semantic networks technique de-
scribed in section 5.2.3 on page 71. The network created is rather large (about
47 leaf nodes, 20 gather nodes and 5 select nodes) and uses all the features
o�ered by the semantic networks technique (see �gure on the following page).

134

Figure 6.8: Semantic network in the Active Editor

Leaf nodes The prototype leverages all types of leaf nodes. The actor leaf
uses the pre�x with to rate incoming words as actors, the zipcode node uses
regular expressions to detect zipcode and the state node uses a small local vo-
cabulary set to claim US states. In addition, the city name and restaurant
name nodes are connected to a database to check against large vocabularies
containing major US cities (30'000 entries) and restaurant names (100'000 en-
tries).

Non-leaf nodes The network contains �ve select nodes, used to pick the main
topic of interest expressed by the user. Given the large size of our vocabularies,
the disambiguation process described on page 82 is helping select nodes make
the correct decision. For instance, let us consider the utterance ��nd hotels with
a �tness center in Mountain View� triggers the disambiguation process. The
word ��tness center� is both a point of interest, ��nd a �tness center in Palo
Alto� is valid, and a hotel amenity. In this particular example, our system will
consider a hotel rather than a point of interest because the hotel branch has
three tokens, whereas the point of interest only has two words activated for the
utterance.

A set of gather nodes are used to create data structures containing the in-
formation gathered through user utterances. Two of them request semantic
validation before submitting their ratings.
First, the address gather node, in charge of collection city name, zipcode and
state information, asks for validation not only to check if a zipcode matches a
city name, but also automatically �lls empty information slots. For instance,
the utterance ��nd Starbucks for 94040� triggers the zipcode leaf. The ad-
dress node gathers empty values from its city name and state nodes, and asks

135

for validation before submitting its semantic rating. The validation agent is
implemented as a service and uses third party services and local databases to
not only �ll in missing slots (94040 would resolve to Mountain View, CA), but
also provide suggestions. For the utterance ��nd movies in memphis�, as they
are multiple Memphis in the US, the validation agent picks the largest one
(Memphis, Tennessee), but also suggests names and state of other matching
city names.
Secondly, the �ightSearch node validates airport names. If a three-letter air-
port code is provided (i.e. SFO or GVA), it requests help for validation. In
addition, should a full city name be provided, the validation service converts it
into the appropriate airport code (i.e. Geneva would become GVA).

Infrastructure nodes As for any semantic network-based Active Ontology,
two generic concepts are in charge of receiving utterances and passing along
valid commands for execution. These nodes also take early actions to notify
users about the process taking place, which is relevant for asynchronous user
interfaces. As an utterance is received, before any processing takes place, the
delegation mechanism is used to acknowledge the reception of the utterance.
Similarly, as a valid command is generated by the language processing Active
Ontology, a message is sent back to the user to notify what was understood
by the system and which actions are going to be undertaken. These actions,
relevant for asynchronous user interfaces, generate the message #2 of the top
table on �gure 6.7.

Processes

A second Active Ontology has been designed to model the logic of the applica-
tion. Based on the technique presented in section 5.4 on page 109, it represents
the sequence of actions to undertake to ful�ll user requests. The logic of our ap-
plication is rather simple and �gure 6.9 shows the pattern used for most actions.

• First, a start node is programmed to trigger whenever a command to exe-
cute is submitted by the Active Ontology in charge of language processing.

• A switch node examines incoming command to �nd out which processing
branch to activate. There is one branch per processing task (retrieving
hotels, restaurants, �ights, movies, booking a table, etc...).

• The �rst element of each processing branch is an execution node in charge
of preparing all necessary �ow instance variables for the task to accom-
plish. Some variables are extracted from the incoming command. Each
leaf of the language processing semantic network is part of the generated
command and therefore carries valuable information to be extracted and
used by the processing logic. Some variables are created speci�cally for
the task to carry out. For instance, information to send back to users is
stored in two �ow instance variables. A message variable is prepared to
notify users about what our assistant is about to undertake and an error
message keeps the message to deliver should the processing fail.

• Next, an invocation node activates a noti�cation service to deliver a mes-
sage to the user. Note that there are multiple services registered under the

136

Detect Command
Extract Variables

Trigger Node

Dispatch Control
Extract Specific Variables
Sets flow variables

Switch Node

Notify User

Invocation Node

Invoke Service

Invocation Node

Process Results

Execution Node

Notify User

Invocation Node

End

End Node

repeats….

Process Results

Execution Node

Invocation Node

Invoke Service

Notify User

Invocation Node

Figure 6.9: Information retrieval execution pattern

noti�cation service category. The dynamic selection technique presented
in section 5.3 on page 96 selects the most appropriate one to deliver the
message. In our case, the policy is simple: the picked modality is the same
the one from which the utterance was received. If the user request came
as an incoming email, the response will be an email. At this stage, the
delivered message is a con�rmation of what was understood and what our
system is about to perform. It is the message #3 of the top table on �gure
6.7.

• Once the user has been noti�ed of our intentions, a second invocation node
requests the execution of a service that ful�lls the core processing of the
execution branch. There, we would invoke services in charge of retrieving
movie listings, weather forecasts or �ight information.

• If the service invocation succeed, an execution node retrieves the results of
the invocation to prepare the message to be sent back to the user. Results
would be for instance a list of movies, restaurants or hotels. The logic

137

of this node would iterate through results and format the message to be
shown to the user.

• The control then goes to an invocation node, calling the noti�cation service
to deliver the message.

• Finally, an end node performs cleanup tasks to terminate the execution of
the �ow instance.

• At any point in the process, should any service invocation fail or timeout,
a dedicated execution node would prepare the message to inform the user
about the problem.

Services

The implementation of the service management part of the application is a three-
step process. First, in the Active Ontology in charge of service management,
service categories are designed. Categories expose an API that re�ects the data
types required by our application. For instance, �gure 6.10 shows a restaurant

Figure 6.10: Service Category in Active Editor

information retrieval service category. The goal is to get a list of restaurants for
a given city, and possibly know when a table is available. Some attributes may
be speci�ed about restaurants (i.e. style, price range) a sorting attribute (i.e.
distance, rating, price) controls the order of entries in the result set. Therefore,
inputs the service takes a restaurant de�nition, a date and a sorting attribute.
As outputs, services of this category return a list of entries where each entry
contains a restaurant object, location information i.e. latitude, longitude, phone

138

number) and a list of openings (date and time of availabilities). Note that the
details of the restaurant object are not de�ned here, there is a reference to the
restaurant node as de�ned in another Active Ontology in charge of language
processing.

The second step consists of getting hold of a service that provides the re-
quired functionality. In the case of this application, we have created two types
of SOAP compliant services: web scrapers, database wrappers. Web scraping
consists of writing a program that automatically extracts information from on-
line sources by simulating the behavior of a web browser. The technique used
in this prototype consists of writing web scrapers (typically in Javascript) and
expose them as SOAP compliant web services. Some services, such as city or
airport information, are implemented on top of large databases. In this case,
a thin wrapper (typically written in Java using JDBC) exposes the database
content as a SOAP service.

Once a service has been created, the third step consists of registering it under
service categories de�ned during phase one. For SOAP compliant services, the
Active Editor provides a wizard that simpli�es the service provider registration
process. After picking the service category where the service belongs, a set of
registration steps including WSDL introspection, graphical interactive mapping
between the service-speci�c API and the canonical API de�ned by the service
category and testing allow users to register services without writing any code.
A similar process applied to all services and categories of the application.

6.2.5 System evaluation

The evaluation of the implemented system is a two-phase process. First, we
ensure the actual system �ts the functional and responsiveness requirements
de�ned at the design phase. Secondly, we compare our system against the best
commercially available tool designed for mobile users (Google Mobile) by asking
a small population of users to perform similar tasks with both systems. The
goal of this is to evaluate whether an assistant-like software is likely to compare
favorably to more traditional software.

Compliance with initial requirements

This section explains how our prototype fully complies with its requirements.
As discussed earlier (see section 6.1.4 on page 125), the validation of the system
is a three-step process.

First, using the application scenarios, a collection of language processing
regressions tests have been created to cover as many interactions dialogs as
possible. The regression tests have been regularly and successfully executed
against the system to verify its compliance with the devised scenarios.

Secondly, beyond language processing, users have extensively used the sys-
tem by running scenarios. Problems were reported to correct errors in both the
Active Ontology in charge of dialog execution and the community of services
used as the system backend.

Finally, the overall responsiveness has been measured to ensure that users
get a feedback from the system with the time range speci�ed in the application
requirements. The average response time to an end-to-end query such as ��nd

139

movies in Palo Alto� or �get my all �ights out of SFO to Los Angeles� is below
10 seconds.

Component group Response time

Input gathering 10 [ms] to 10 [s]

Language processing 300 [ms] to 4[s]

Process/dialog execution 200 [ms]

Service Execution 400 [ms] to 20 [s]

Figure 6.11: Contributions to the responsiveness

Following the guidelines provided in section 6.1.4 on page 125, we measured
the contribution of four main components of the application (see �gure 6.11).
It is nevertheless important to note that the response time varies signi�cantly
depending on the modality, the utterance size or services to contact.

First, the contribution of the input gathering process depends on the user
interface. For instant messenger, thick Java client or web-based interface, the
information reached Active within milliseconds. On the other end, for the email
modality, messages can take up of 10 seconds to be reported to the Active Server.
This is not an issue given the asynchronous nature of emails. The user sends an
email and moves on to di�erent activities, expecting the answer to be delivered
later in his or her mailbox.

The contribution of the language processing task ranges from 300 millisec-
onds up to four seconds. Multiple factors impact the time spent processing user
inputs. They include the size of the semantic network, the size of the utterance,
the semantic validation techniques and the vocabulary size. A detailed analysis
of the language processing performance impact is provided in section 7.3.2 on
page 182.

The contribution of running the dialog and formatting the messages is neg-
ligible. The impact of using external services varies from less than 1 second
to 20 seconds. Services in charge of delivering information to user interfaces
take between 400 to 600 milliseconds, including the delegation process. On the
other end, web-based information retrieval can be rather slow and take up to
20 seconds. Unfortunately, Active programmers usually have not control over
these external services. The only solution to improve response time is to create
a local cache, for storing static information. For instance, the results such as
phone numbers, addresses or locations can be cached. However, dynamic infor-
mation such as �ights status, hotel openings or even restaurants ratings cannot
be cached and require the invocation of an external service.

Figure 6.11 shows that the overall response time contribution of the Active
platform itself ranges from 500 milliseconds to 4 seconds and averages over
long dialogs at 3 seconds. Given that the average response time of the system
is about 10 seconds, the Active platform is responsible for 30% of the overall
response time. The current implementation of the Active platform was designed
as a research tool, without a strong focus on performance and scalability. A
complete performance analysis of the Active Server (see section 7.3) presents its
strengths and weaknesses. It also provides a list of recommendations to take
into account when developing an optimized and scalable version of our systems.

140

User evaluation

This prototype has been used to demonstrate that, in some domains, intelligent
assistant applications perform better that more conventional software. A small
population of users was asked to perform a series of travel related online tasks
with both our prototype and Google MobileTM. Results show that our Active-
base application, code named Active Mobile, performed better both in terms of
time to completion and e�ectiveness that its commercial counterpart. This user
evaluation is described in details in section 7.1 on page 161.

6.2.6 Conclusion

This section presents the �rst end-to-end application built with the Active plat-
form. The application is an assistant that helps users with online activities over
dialog-based natural interactions.

This prototype helps us to achieve two goals. First, it validates the Active
platform it terms of both implementation and techniques. The actual prototype,
implemented on top of the Active framework, is functional and complies with
all its initial requirements. The application demonstrates that both the Active
tools and methods can be used to build user-centric applications. Tools such
as the Active Server and its extensions, the Active Editor and its plugins and
the Active Console have been extensively used to design, implement, test and
deploy the system. All methods introduced so far, including basic techniques
(see section 5.1 on page 57), language processing (see section 5.2 on page 64),
process modeling (see section 5.3 on page 96), service dynamic orchestration
(see section 5.3 on page 96) and application design (see section 6.1 on page 122)
have been used.

The second goal, consisting of demonstrating that a combination of natural
language and context-based dialog improves mobile users online activities has
also been reached. A small population of twenty users has been asked to per-
form the same tasks using our system and a commercially available similar tool
(Google Mobile). Results show that, for this speci�c application domain, an
intelligent assistant-like system provides better performances in terms of both
task completion and required time (see section 7.1 on page 161 for details).

The prototype has also been validated by being positively evaluated by com-
mercial companies. First, a major player in the �eld of mobile telephony evalu-
ated the impact of such systems and decided to pursue research and development
along the tracks suggested by our approach. Secondly, a large database vendor
is evaluating our software in the context of building a assistant-oriented system
to help users query and navigate large databases. Finally, a commercial system
providing an intelligent assistant for mobile users is being designed, following
many of the concepts demonstrated by our prototype, and based largely on the
value proposition demonstrated by our user evaluation.

6.3 The Intelligent Operating Room

6.3.1 Introduction

Modern operating rooms are equipped with various computer systems, allowing
surgeons to perform complex operations and develop new techniques to improve

141

results, limit the trauma of surgery on patients and shorten hospital stays.
However, both the environment and users of this �eld make the integration
and usage of computer systems a challenging task. The operating room has
obvious and strict constraints about space and sterilization that prevent the
use of classic keyboards and mice. In addition, surgeons and their sta� often
wear cumbersome out�ts including sterile clothing, head lamps and gloves. The
patient being the highest priority, surgeons always need to focus on the operating
�eld. Therefore, they cannot a�ord to switch attention or drop their tools to
interact with computer systems. According to surgeons, computers will be more
e�ective and easily accepted if they can be seen as any other member of the
team. This implies that computer-human interaction should be as natural and
simple as possible. The operating room is an environment where an intelligent
assistant approach could allow computers to be more e�ciently accepted and
used.

The section is organized as follows. First the requirements of the system are
gathered to create regression tests and scenarios. This is followed by a detailed
description of the system implementation. Next, an analysis of the system
performance and the results of a user evaluation help validate the system against
its initial requirements. Finally a conclusion summarizes our achievements and
the results of the system evaluation.

6.3.2 Prototype goals

This prototype was designed to implement two goals. First, after showing that
the Active platform can be used in the �eld online activities (see section 6.2 on
page 127), we would like to demonstrate its �exibility by building a user-centric
system in a totally di�erent application �eld. Secondly, we intend to use the
prototype as an evaluation tool to explore if and how intelligent assistants can
help surgeons in the operating room.

6.3.3 Requirements de�nition

Based on the technique proposed in section 6.1 on page 122, the application
design starts from creating a requirement list and building a set of scenarios.
Based on preliminary discussions with surgeons, we characterized the system
along two lines: feature set and interaction modes. Let us start with the feature
list:

• Information retrieval. The system allows surgeons to retrieve and manip-
ulate preoperative data: a set of CT scans and a reconstructed 3D model
of the area to operate.

• Live real-time feedback. A video feed coming from an image source (endo-
scope or microscope) is to be displayed along with vital patient informa-
tion. Optionally, additional data streams are added to inform about the
patient's condition or any relevant information required by surgeons. For
instance, neurosurgery can be conducted while monitoring the patient's
brain activity through real-time electroencephalograms.

• Robotic component. The video source is mounted on a powered platform,
or a robotic arm, to be controlled through our prototype.

142

• Uni�ed single interface. An integrated user interface needs to gather and
render all the information in a single console.

• Intelligent space. The prototype should not only be aware of the user in-
tentions, but also gather information from the operating room as a whole.
In our prototype, we provide the assistant with patient related data (heart
beat, blood pressure and body temperature) to not only be displayed on
the user interface but also to be taken into account in its processing.

In addition to this feature set, interaction modes have also been de�ned:

• Multiple input modalities. In addition to the conventional mouse-keyboard
inputs, the system should support voice and hand gesture (contact-less
mouse [23]) recognition.

• Multiple output modalities. Symmetrically, when the system has informa-
tion to communicate, multiple modalities should be supported. Messages
can be delivered as text messages on the user interface or as sounds (beeps
or speech synthesis).

• Modality fusion. Users should be able to express commands across modal-
ities. For instance, one may say �move the endoscope this way� while ges-
turing to the left. The system should be able to fuse incoming signals to
understand the user's intention and produce the correct behavior: moving
the camera to the left.

• Context aware. The system should be aware of the interaction context.
In our example, we de�ned three contexts: camera, preop images and
3D model. Once in a given context, short partial commands should be
enough for the system to understand the action to perform. For instance,
the sequence : �please move endoscope to the left� should set the context
to camera. Therefore, subsequent motion control utterances can simply
be �up� or �zoom in�.

• Provide help. If users issue incomplete commands, the system should be
able to provide contextual help. This feature is most important during a
training phase where users discover and learn about the system simply by
interacting with it.

• Robust parsing. Parsing should be robust and support dis�uencies.

To crystallize the constraints de�ned above and give us a clear goal we de�ned
a set simple scenarios. As an example, �gure 6.12 shows a simple interaction
sample.

143

Utterance #1 ct show �rst image

Actions: Shows the �rst image of the CT scans. Context set to images.

Utterance #2 next

Actions: Shows the next image of the list

Utterance #3 camera

Actions: Sets the context to camera.

Provides help: move or zoom?

Utterance #4 hughh, move up

Actions: Camera moves up.

Utterance #5 hand motion to the left

Actions: Camera moves to the left

Utterance #6 model show top

Actions: Context set to the patient 3D model

3D model rotates to show the top of the organ

Utterance #7 say: ct show and hand gesture: to the right

Actions: Context set to images.

Shows the next image of the list

Figure 6.12: Evaluation Corpus

Finally, we de�ned the responsiveness of the system. The nature and user
expectations of the operating room assistant di�er in many ways from the online
activities assistant presented in section 6.2 on page 127. First, all components
are local, there is therefore no remote call to potentially slow external services.
Secondly, the tasks to be perform by the assistant are far less complex. Accord-
ing to the scenarios they consist of very simple operations such as retrieving
images or moving a powered camera. The system to create provides assistance,
while the user is still in charge of all operations. It is similar to a modern air-
plane that helps the pilot �y, but is by no means an autopilot. In addition, user
expectations are high. Given the application �eld, surgeon cannot a�ord, and
will no accept, waiting for their requests to be understood and performed. The
response time has therefore to be short, ideally a few hundred milliseconds, but
no more than a second.

6.3.4 Implementation

Overall design

Following the Active design approach, the system consists of an Active Server
and a community of loosely coupled services (see �gure 6.13). The core of the
application is based on three Active Ontologies running on the Active Server.
They implement the behavior of the intelligent interface: language processing,
plan execution and interaction with the environment. A community of loosely
coupled services makes up the rest of the application by sensing the environment
(speech and gesture recognizers, stereo camera, user interface) and acting (user
interface, speech synthesis and optionally a robotic arm).

144

Stereo Vision

Patient vital signs

Speech Recognizer

Gesture Recognizer

Speech Synthetizer

Communicate
Act

Anticipate
Undersand

Observe
Sense

Active Server

Robotic tool holderUser Interface

Figure 6.13: Intelligent Operating Room Architecture

When a sensor gathers a piece of information from the environment, it re-
ports it by asserting a fact into the data store of the language parsing Active
Ontology. This event triggers the evaluation of running Active Ontologies that
will generate the most appropriate action to perform what the user asked. Note
that the system is not only aware of the surgeon's activities, but also gathers
information about the condition of the patient and the status of various devices
running in the operating room. It aggregates this information in its global be-
havior to, for instance, warn the surgeon when the patients condition changes.
As more components get integrated, the Active based surgery assistant has the
potential to transform the operating room into a smart intelligent space.

User interface

The main user console is implemented in Java using the Swing toolkit, Java3D
and Java Multimedia media libraries for 3D rendering and live video feed display.
As shown in �gure 6.13, it consists of four main areas: live images delivered by
the endoscope, pre-operative images, a 3D model and general information about
the current condition of the patient. If the user interface is the only component
with which the user directly interacts, it is actually only the tip of the iceberg.
The console is just another service in the community of components working
for the user. In addition to the console, speech and gesture recognizers, touch
screen are also capturing and reporting user generated inputs.

Gesture recognition

Since surgeons cannot use any mouse nor keyboard while operating, we provide
them with a virtual mouse pointer by tracking their hands motion. Based on

145

Figure 6.14: Intelligent Operating Room Console

the motion information, surgeons can either use their hand directly as a mouse
or perform simple gestures to trigger actions.

Two motion capture techniques have been integrated into the system. First,
a stereo camera is used to track the surgeon's hands and feed the gesture rec-
ognizer. This technique is non intrusive, easy to install but is rather sensitive
to light conditions and its accuracy is limited[23]. Secondly, we used a method
where markers are mounted on the surgeons tool and being tracked, using pulsed
infrared light, by a base station that computes their location in space[50]. This
technique is more intrusive (instruments have to be equipped with markers)
but provides a better precision and is less sensitive to light conditions. Thanks
to our service oriented approach, both mechanism can be easily replaced and
swapped without adjusting any code nor con�guration parameters.

For e�ective and fast gesture recognition, we extended the libstroke 2D recog-
nition technique [83] to work as a 3D gesture recognizer (see �gure 6.15). Lib-
Stroke takes a stroke (set of captured positions) and converts it into a command
by generating its signature. In its classic 2D implementation, the algorithm cre-
ates a bounding box around the stroke and divides it into a 3x3 grid where each
sub area is uniquely identi�ed (1 to 9). Then, each element of the stroke is
visited to �nd out the subarea of the matrix where it belongs. Identi�cations
of each visited subarea are concatenated to create the signature of the stroke.
The signature can then be compared to a vocabulary that binds commands to
signatures. Since we are using 3D gesture capture techniques, we extended the
libstroke technique to work in 3D. Instead of using a 3x3 matrix, we work with
a 3x3x3 matrix consisting of 27 sub areas.

146

(signature)

a b

ed

g i

c

f

h

a b

ed

g i

c

f

h

j k l

o

r

s t u

x

@

adghi

gdaistu

2D gesture

3D gesture

(signature)

Figure 6.15: 3D Gesture Recognition

Speech and sounds

Speech recognition and speech synthesis are two services implemented in C#,
using the Microsoft speech SDK. The speech recognizer has not been trained
and uses a generic male user model. For best results, we have nevertheless
constrained it to a small grammar based on the vocabulary set de�ned by our
application domain.

Recognition triggering

A fundamental issue with both speech and gesture recognition is how to tell
recognizers when to start recognizing and when to stop.

The simplest solution is to use a button, or a pedal, to trigger the process.
Surgeons are generally against adding any contact device to their work environ-
ment. They already have multiple pedals to control the position of the operating
table, lights, drills or suction devices.

For speech recognition, our solution is based on a keyword-based technique
to let the speech recognizer know when to listen to the surgeon. This was imple-
mented using dynamic grammars, where most of the time the speech recognizer
has a very simple grammar, made of a few keywords. Whenever one of them
is recognized, a more complex grammar is loaded on the �y and the user can
provide a full richer command. A short pause would stop the acquisition and
start the speech recognition process.

For gesture recognition, we use to concept of hot zones. Whenever the hand
of the surgeon (or tracked tool) is positioned in a prede�ned zone for a few
seconds, the gesture recognizer is triggered. The user is then noti�ed (by a
beep) so that he or she can start performing a gesture. To specify the end of a
gesture, the user stops moving for a prede�ned period of time (a few seconds)
to terminate position acquisition and trigger the gesture recognition process.

147

6.3.5 System evaluation

The system presented in this section is the second proof of concept showing
that the Active platform can be used to implement end-to-end user centric
applications. The evaluation of this prototype is organized into two topics.
First, we measured performance aspects of the system to compare them with
the initial requirements. Secondly, we studied a small population of surgeons
asked to evaluate the system by performing a set of simple tasks.

Compliant with initial requirements

The actual behavior of the implemented prototype has been compared with
both its functional and response time requirements.

Functional requirements The system ful�lls all the functional requirements
captured in the design phase of the project. For the language processing aspect
of the applications, regression tests simulating user interaction have been suc-
cessfully run against the application. In addition, usage scenarios have been
executed by both non-medical users and surgeons to verify the usability of the
assistant. A more complete evaluation from surgeons is given in the following
section.

Responsiveness The actual implementation of the intelligent operating room
partially complies with its responsiveness requirements. When surgeons express
a request, the response time, de�ned by the amount of time required by the
system to provide appropriate actions, ranges from 550 to 1200 milliseconds
(see table 6.16).

The execution sequence of each user request can be summarized as follows.
Once a user request is sensed either from the graphical user interface, the speech
recognizer or the gesture recognizer, it is reported as an incoming event into the
Active Server. Then, the Active Ontology in charge of language processing kicks
in and produces a result within 350 milliseconds. (Details on the performance of
the Active-based language processing technique is provided in section 7.3.2 on
page 182). Given that the logic of this application is fairly simple and to optimize
performance, a single Active Ontology performs both process modeling and
service delegation. This component provides a result within 150 milliseconds.
Finally, the action to perform is communicated to the appropriate components
through SOAP messages. Since all components of the application are running
on a single computer, invoking services is not signi�cantly contributing to the
overall response time. Table 6.16 shows the sequence of processing steps and
their contributions to the overall response time.

148

Capture

technique

Capture [ms] Parsing [ms] Processing and

delegation [ms]

Total [ms]

Speech Recognizer 500 to 700 300 150 950 to 1200

Gesture Recognizer 1100 300 150 1450

User Interface

(touch screen)

50 300 150 550

Figure 6.16: Contributions to the overall response time

The capture time is the amount of time required by sensors to capture and
report user inputs. The capture time starts when the user has fully expressed a
request to end when the recognized utterance is reported to the Active Server.
Let us examine three cases : speech recognition, gesture recognition and the
graphical user interface.

First, spoken commands. The speech recognizer used for this prototype
uses the Microsoft Speech Engine (version 5.1) exposed as a web service using
the .NET framework and written in C#. The speech engine used is grammar
based, the smaller the grammar, the faster the results. To provide fast process-
ing time, the grammar is constrained to the application domain and kept as
small as possible. The system acquires the voice signal as the user speaks, to
launch the recognition process as the user stops talking. In our setup, speech
recognition and delivery of the utterance to the Active Server ranges from 500
to 600 milliseconds depending on the length of the utterance.

The second sensor used in the system is the gesture recognizer. The process
actually involves two components: the tracker and the recognizer. The tracker
is the device in charge of creating a trajectory out of the three dimensional
cursor used to express a gesture (a hand or a tracked tool). Similarly to voice
recognition, the capture time starts when the gesture is detected as complete.
At this point, the recognizer takes over to get hold of the trajectory and launches
the libstroke 3D algorithm to generate a gesture signature and deliver the result
to the Active Server. For both tracking techniques, the whole process takes 1100
milliseconds. The delay is mostly due to the technique used to detect the end
of the gesture. As described in section on page 147, the system waits for the
user to pause for about one second to consider the gesture complete and trigger
the recognition process. Experiments showed that the shortest possible pause
time was one second to reliably detect the end of a gesture, therefore adding
a signi�cant contribution to the capture time. Once triggered, the recognition
process and event delivery takes about 100 milliseconds.

The third sensor is the graphical user interface. Touch screens can be steril-
ized, or wrapped into sterilized plastic covers, and can therefore be used in the
operating room. In such cases, surgeons can use their �ngers to interact directly
with computer programs signi�cantly reducing the capture time.

The total processing time of table 6.16 shows that, for complex input modali-
ties the response time of the system can take up to 1500 milliseconds. Therefore,
our initial goal of responding to a user utterance within one second is not met.
We note that most of the time is spent on the recognition process (voice and ges-
ture) and can be further improved outside of the scope of the Active framework.
However, about 500 milliseconds are spent in various Active-related processing.

149

This �gure needs to be lowered to allow both the application and its processing
to become more complex in the future. Section 7.3 on page 175 provides an
analysis and suggestions to improve the performance of the Active system.

User evaluation

The system has been implemented and deployed as a prototype setup to be
evaluated by surgeons. Given the very small population of our evaluation (three
surgeons), results may not be signi�cant. It is however interesting to report their
comments and the result of their evaluation.

Figure 6.17: Evaluation setup

First, the evaluation took place on a slightly enhanced demonstrator built
within the context of a European project. Two major enhancements were added
to the system presented so far. First, a surgical instrument has been equipped
with a marker to be tracked. The instrument is used to not only perform gesture
recognition but also as a 3D joystick to directly control the position of a robotic
endoscope holder. The robot was a thee degrees of freedom parallel system, able
to move the endoscope within a work area represented by a 30 centimeter cube.
Secondly, more functionality has been added to take snapshots and videos out
of the video stream generated by the endoscope.

After a brief introduction and basic training on the system, surgeons were
given a list of tasks to complete. As a multidisciplinary project, the exercise
involved tasks to test and evaluate all the components of the project. Here is
the subset of Active related tasks.

150

1. Image navigation. The user has to bring the third image and the last
image of the list of CT scans. Tasks have to performed �rst using classic
user interface, then voice commands and �nally gesture recognition.

2. Media capture. The user has to take snapshots and short videos of the
video stream. Tasks have to performed �rst using classic user interface,
then voice commands and �nally gesture recognition.

3. Robotic control. Surgeons were asked to control the robotic arm to insert
the endoscope into a small hole (5 centimeter in diameter). This task is
only performed by using a tracked surgery tool as a joystick. However,
the motion mode can be controlled by voice commands to decide how fast
the tip of the robot should move. Three motion modes were available:
fast, normal and accurate. Fast mode is designed for fast motions, to
quickly bring the robot around the area to operate. Normal mode is more
accurate, the motion ratio between the robot and the joystick is one to
one. A one-centimeter motion of the tool forces the robot to move by one
centimeter. Finally, the accurate mode is used for �ne movements. The
motion ratio between the surgeon's tool and the robot is one to ten.

For the Active part of the project the outcome of the evaluation is positive
and can be summarized as follows. First, all three surgeons agree with the
idea of using assistant-like interfaces to control computer systems brought into
the operating room. In addition of increasing usability, it also federates and
hides the complexity of all the computer systems they need. Currently, each
system comes with its own user interface, forcing surgeons and their sta� to get
familiar with several di�erent user interfaces and also bring, for each application,
a separate set of monitors, keyboard and mouse to the operating room.

Secondly, even if table 6.16 shows that our goal of responding to user requests
within one second was not met, no surgeon complained about any lag nor delay
in the responsiveness of the system. According to user interface research [60],
a one second lag is noticeable and is the limit for users �ow of thought to
stay uninterrupted. Only systems that respond within 100 milliseconds are
perceived as instantaneous. We therefore assume that, our system being a
research prototype, surgeons had lower expectations during the evaluation and
focused more on the functional side than the response time.

All three subjects expressed concerns with software systems that require
heaving training and use complex user interfaces. The contextual help and
suggestions brought by our prototype was well received, but only to be activated
during training, or �rst usage of the system. Once the surgeon knows how to
utilize a system, such proactive noti�cations should be disabled.

The combination of hand gesture (tracked by vision or active marker) and
simple sounds (to notify that the system is actually tracking) turned out to be
promising and was well received. Using a 3D pointer to directly control a device
(such as the robotic holder), have a virtual mouse or perform gestures is natural
to users. However, the reliability (vision tracking relies on light condition and
occlusions), convenience (active markers require cables) and accuracy need to
be improved before undertaking more involving clinical tests.

However, the usage of speech, for both input (speech recognition) and output
(speech synthesis) was not well rated by users. On the speech recognition side,
our log shows a recognition rate of 95% and a 500 millisecond recognition rate.

151

Despite these positive �gures, two out of three surgeons were not complaining
about recognition accuracy nor response time, but rather about how and when
to trigger recognition. Given their already complex environment, they cannot
use any external switch (button or pedal) to trigger the recognition process.
We therefore opted for a keyword-based technique to activate the recognition
of more complex commands. Once the keyword is recognized, the system lis-
tens for twenty seconds to serve one or more user voice commands. One out of
three surgeons was accepting this solution arguing that he wears a microphone
anyways for teaching purposes, and issuing non critical commands (such as tak-
ing a snapshot, or controlling ambient lights) would be best expressed through
voice. On the output side, using speech synthesis is considered bothersome and
disturbing by all subjects.

Finally, through this evaluation process, our intelligent-space approach re-
ceived a positive feedback from not only surgeons, but also industrial companies
building operating room equipments. As part of our contribution to the project,
we were asked to present our work and introduce service oriented architectures
to engineering teams in charge of operating room design. If the approach is
appealing by its �exibility and potential, two major problems need to be over-
come. First, any computer based system used for surgery needs to be extremely
reliable to be certi�ed by the authorities. This process may be challenging for
components such as a speech recognizers, a hand tracker, a gesture recognizer
and the entire Active framework. Secondly, standards need to be designed and
agreed on to implement such a service oriented approach.

6.3.6 Conclusion

The prototype presented in this section is the second application built on top of
the Active platform. The system is an intelligent assistant aimed at providing
help to a surgeon in the operating room.

The application was designed with two goals in mind. First, it shows that
the Active framework is generic and �exible enough to build user-centric appli-
cations in di�erent application domains. As section 6.2 on page 127 presents
an Active-powered system that helps mobile users dealing with online services,
the prototype presented here shows a functional application designed to pro-
vide help in the medical �eld. Our operating room assistant complies with all
its functional requirements. A batch of regression tests are used to ensure its
language processing component complies with its requirements and user-based
tests ensure that all functional pieces work according to scenarios. However,
the responsiveness requirement of reacting within one second to any user input
could not be met. Some requests require up to 1500 milliseconds to be processed
and their actions undertaken. If this is a problem to be solved in the future,
the user evaluation did not �nd it blocking and did not make the application
unusable.

Secondly, the prototype claims that using an assistant-like interaction style
helps surgeons accept and leverage computers in the operating room. To eval-
uate this claim, the prototype was tested by a small population of surgeons.
Our system was positively rated and a valuable list of comments and sugges-
tions was drawn from the test results. Surgeons agree that a more natural
interaction scheme with computer would help their integration and use in the
operating room. Moreover, such approach federates heterogeneous systems into

152

one single, easy to use interface that hides their complexity. The outcome of the
evaluation also showed that a combination of gestures and simple sounds would
not con�ict with surgeons activities and be the most appropriate way of com-
municating simple commands. On the other hand, voice-based command and
text synthesis are found invasive and more distracting than useful. Finally, the
commercial world expressed interest in this new way of approaching computer
systems in the operating, while warning about safety and standards compliance
problems.

Finally, the implementation of the system allowed us to design, implement
and test innovative solutions to solve some of the problems expressed the appli-
cation requirements. For instance, the extension of the libstroke algorithm to
implement fast 3D gesture recognition had never been done before and proved to
be e�ective for our application. We also experimented with a range of techniques
to trigger the process of both speech and gesture recognition.

6.4 Scheduling Assistant

6.4.1 Introduction

To illustrate how Active can be used as the backbone of an intelligent assistant
application that can handle long-running processes, we present a system able to
organize a meeting for a group of attendees. The assistant interacts in a natural
way, using plain English, with the meeting organizer and attendees through
instant messages and email.

The section is constructed as follows. First, the goals and reasons behind the
development of the system are presented. Next, a scenario presents the require-
ments of the system. This is followed by a detailed implementation description
of the application. After an evaluation of the system, both in terms of func-
tionality and implementation, a brief conclusion summarizes the achievements
of this project.

6.4.2 Prototype goals

This application was chosen for three reasons. First, the prototype is another
testbed to validate and improve our Active-based approach to build user-centric
applications, one that pushes our use of long-running processes as opposed to the
request-response style interaction that characterizes our previous prototypes.

Secondly, as meeting organization has been the subject of multiple agent-
based implementations[56, 62, 57, 4], it has become a standard test for intelligent
applications. It is interesting and relevant to compare our approach with other
implementations of the same task.

Finally, based on our experience, we will try to build the whole system in less
than a week, to prove that the Active platform is suited for quick application
building and prototyping.

6.4.3 Requirements de�nition

The functional requirements are expressed through the following scenario. The
organizer uses an instant messenger client (Yahoo! Instant MessengerTM in our
example) to interact with the intelligent assistant. The organizer can express

153

her needs in plain English by sending sentences like: �organize a meeting with
john doe and mary smith tomorrow at 2 pm about funding�.

The assistant initially responds with a summary of what was understood. If
any mandatory piece of information is missing (i.e. a location), this is commu-
nicated to the user. Speci�c details about the meeting can be updated or added
by the organizer using partial utterances such as �tomorrow at 7 am� to adjust
the time or �with bob� to add an attendee. After each user input, the assistant
will also provide suggestions about what can be speci�ed.

Through this iterative process the organizer can de�ne all details regarding
the meeting to organize. When everything has been decided, the organizer
triggers the task of actually organizing the meeting by typing �do it� or an
equivalent utterance. Then, the assistant uses web services to access public
calendars (Google CalendarTM in our case) of all attendees to �nd a list of
suitable slots for the meeting. Starting from the meeting time, each one-hour
slot is checked against all attendees' calendars. For each slot, if all attendees
are available the slot is kept as a candidate for the meeting. Once the list of
possible time slots for the meeting is gathered, the assistant sends an email to
all participants asking if the �rst slot of the list is suitable for the meeting.
If all attendees respond positively, the meeting is scheduled. If one attendee
responds negatively, the next candidate time slot is selected and a new email
message is sent to all attendees asking for approval. This process continues until
a suitable date and time are found. If no date can be agreed on within the day
of the attempted meeting, the process is aborted and the organizer is noti�ed.
If a date suits all attendees, the assistant will actually schedule the meeting by
automatically adding an entry into all attendees calendars.

This scenario is the basis of a regression test harness designed to validate
the Active Ontology in charge of language processing. In addition, the scenario
is used to model the logic of our application. Although this example proposes a
fairly simplistic modeling of the scheduling process, it is su�cient to illustrate
natural language interpretation and dialog, running asynchronous processes,
web-service delegation, and multimodal user interaction.

As for responsiveness, we apply the rule suggested by Chai[87], where feed-
back should be given to the user at most ten seconds after the last request
was expressed. For operations that take more than thirty seconds to complete,
which is the case of the process of organizing the meeting, acknowledge about
what was understood and what is being undertaken should be provided within
ten seconds.

6.4.4 Implementation

Overall design

The core of the application consists of three Active Ontologies implementing the
overall behavior of the intelligent assistant: language processing, plan execution
and service brokering. The rest of the application consists of SOAP enabled
web services providing access to calendar information and two Active Server
extensions providing email and instant messenger communications.

The �rst stage of the application performs language processing. Incoming
utterances from the meeting organizer are gathered by Active server extensions
from either the intelligent assistants email account or its instant messenger client

154

Service
Delegation

Plan
Execution

Language
Processing

IM SOAP
Extensions

gmail
calendar

Email Instant Messenger

gmail SMTP/POP
server

Active Server

Figure 6.18: Meeting Assistant Architecture

impersonation. Utterances are then asserted as facts to trigger an Active Ontol-
ogy in charge of language processing based on the method described in section
Language processing.

A second processing stage carries out the sequence of actions required to
execute incoming user requests. Once a command has been generated by the
language processing Active Ontology, it is asserted into the fact store of the
Active Ontology implementing the logic of our scenario. The plan to execute
has been modeled as an Active Ontology (see �gure 6.19) using the process tech-
nique de�ned in section 5.4 on page 109. Following a top down execution, the
start node Start-ScheduleMeeting triggers the execution of the process. First,
the meeting organizer is noti�ed through the execution of the NotifyOrganizer
node that contains Javascript code to format user messages. Then, the Get-
PossibleDate node invokes an external SOAP service to get a list of possible
meeting dates. The AskAttendees node then formats and sends email mes-
sages to all meeting attendees. The Wait-Con�rmation node waits for incoming
emails (deposited as facts by the Active email Extension) and passes control
to the Test-IfAllAgree node. As a switch node , the Test-IfAllAgree node con-
ditionally controls which node should execute next. Three possible situations
are possible: If one of the attendees has rejected the proposed date, control is
passed to the AlternateDate node that picks the next possible date and resumes
the noti�cation process through the AskAttendees node. If more answers are ex-
pected from attendees, the systems loops back through the NeedsMoreAnswers
node. If all attendees have positively responded, the execution control is passed
to the Invoke-BookMeeting to actually schedule the meeting. Finally the End-
ScheduleMeeting node terminates the process and cleans up all its instance data.
As the plan to execute unfolds, a third Active Ontology is used to dynamically
pick and invoke external services. To perform its task, our meeting assistant
requires external services to access the personal calendars of attendees, notify
them (by email) and converse with the organizer (instant messages). All inter-

155

actions with these external resources are ran through the delegation mechanism
described in section 5.3 on page 96. The decoupling between the caller and
service providers allows the caller to specify what is needed, not who nor how
tasks should be performed. It allows for dynamic swapping of service providers
without changing anything on the caller side. Service providers can be dynam-
ically picked based on the users preferences, its location or current availability
of providers.

Figure 6.19: Scheduling logic in Active Editor

External services

Following the Active design pattern, our application is made out of a set of Ac-
tive Ontologies and a community of loosely coupled services (see �gure 6.18). In
our case, the backend is based on the Google calendar APIs to read and modify
the personal calendars of meeting attendees who are supposed to have a Google
CalendarTM account. Google public APIs have been exposed as SOAP web
services for easy integration with the Active Ontology in charge of service bro-
kering. The meeting organizer uses Yahoo! Instant MessengerTM whose public
API has been integrated as an Active Server extension. Finally, an Active Server
extension uses the POP protocol to regularly check its email account. Each in-
coming email is converted into an Active fact for processing. For instance, the
Wait-Con�rmation node (see �gure 6.19) waits for incoming email messages
asserted as Active facts.

156

6.4.5 System evaluation

The system presented in this section has been evaluated along two lines. First,
functional and responsiveness tests were conducted to ensure that the imple-
mented system actually complies with its design requirements. Secondly, it has
been compared, in terms of implementation and featureset, with similar research
projects.

Compliance with initial requirements

The implemented application ful�lls its functional requirements. Regression
tests have been run with success against the Active Ontology in charge of lan-
guage processing. The scenario de�ned as the main requirement for the appli-
cation can be successfully executed by test users.

The response time requirements are also met by the implementation. During
the initial dialog that de�nes all the details of the meeting to organize, the
assistant responds with two seconds to any user request. As the scheduling
process starts, each long lasting action is preceded by a message explaining
what is about to be undertaken. (see �gure 6.20)

Figure 6.20: Meeting Assistant Interaction

Finally our goal was to implement the whole system is less than a week
was achieved. The prototype was designed, implemented, tested and deployed
within three height-hour workdays. It demonstrates that trained programmers
can build simple end-to-end assistant applications within days. The modular
and yet uni�ed Active-based design allows for rapid prototyping of simple ap-
plications, to further analyze and improve speci�c components. For instance,
the current scheduling logic is very simple and nicely encapsulated in a speci�c

157

Active Ontology. Improving the process would only impact this part of the
application, as remaining components would be untouched.

Comparison with existing systems

The domain of meeting scheduling has been a popular application for intelligent
assistant applications. This prototype was designed to prove our claim that
programmers can more easily and quickly create assistant-like applications using
the Active system. We have compared our implementation with two systems
designed to help organize meetings: CMRadar and PTime.

CMRadar[57] is a specialized agent designed for scheduling meetings. It part
of the larger RADAR project, whose main functionality is to help a user deal
with the "crisis" of coordinating a major conference. Everything predominantly
starts with trying to deal with a full inbox of email that needs to be sorted
through and acted on. Emails will be of di�erent types (e.g. update a website,
reschedule some event, �nd a place for some event), so as a �rst step RADAR will
classify emails into a hierarchy of possible template types; for instance, a message
that says "I'm a keynote speaker currently on the schedule for Tues, but I won't
be arriving until Wednesday" can be classi�ed as a "Schedule E�ect Task", or in
a more detailed way down the hierarchy, a "Schedule Modi�cation Task" or even
a "Schedule Time Modi�cation Task". Once classi�cation of the task type for an
email has happened, information extraction will try to pull out the relevant slots
from the message. This will produce a formally structured task item that will
show up in the user's task list. As the user validates and "executes" the task,
this will add constraints to the space/time scheduling component. The RhaiCAL
component of Radar is a calendar-style GUI that displays the current schedule,
and a list of violated constraints that grows as you add new requirements. Once
you have collected lots of the constraints, hitting "optimize schedule" will ask
the scheduling piece to try to �nd the best solution to the posed problem.

Note, this is quite a di�erent problem than the PTIME (and Active) prob-
lems, which are trying to meet the need of getting a schedule based on group
consensus (where each participant has their own, perhaps hidden, preferences).

The PTIME[4] (Personalized TIme ManagEr) system is an agent the helps
users manage their temporal commitments in an adaptive, mixed-initiative and
collaborative fashion. Each user is assigned a PTIME agent in charge of man-
aging his or her calendar. The agent is capable of negotiating on behalf of
the user, provide relevant information and learn about preferences. The sys-
tem integrates with commercial calendars and integrates constraint satisfaction
scheduling, goal directed process management and preference learning. Finally,
part of the larger CALO project, PTIME leverages common components such
as the IRIS[11] extensible user interface application.

158

CMRadar PTime Active-based

Features set

Language

processing

Yes (Email

only)

iAnywhereTM Yes

Scheduling Negotiation

and

constraint-

based

Negotiation

and

constraint-

based

Naive

(extensible)

User Interface Email or

RhaiCAL

Towel Task

Manager

email,

instant mes-

senger,

thick clients

Implementation

Programming

languages and

tools

Ozone
scheduling,

pattern based

parser

written in

Perl for NL

Process

control

(spark),

Constraint

reasoner

(Prolog),

Preference

Learning

(Java,

SVMLight,

C)

Active

Ontologies,

Javascript

Integration Shared

memory,

proprietary

communica-

tion

protocol

OAA Plugins,

extensions,

SOAP

Domain Speci�c Yes Yes No

Figure 6.21: User Evaluation Results Summary

6.4.6 Conclusion

This sections presents an assistant specialized in helping organize meetings.
The system, the third Active-based prototype, interacts with a combination of
instant messages and emails.

The project ful�lls three goals. First, since the application complies with
all its initial requirements, it is the third application that validates our uni-
�ed approach in designing user-centric applications. Secondly, since multiple
systems implement assistants helping in organizing meetings, it is an excellent
candidate to compare our approach with other techniques. The comparative
analysis shows that our approach allows a programmer to quickly create simple,
but complete prototypes that can be easily re�ned and improved in subsequent
phases. Other implementations provide one single excellent specialized com-
ponent (planner, user interface or dialog) while other elements of the overall

159

application are more limited.

160

Chapter 7

System Evaluation

7.1 User evaluation

The goal of the user evaluation is to compare and contrast our approach against
what is currently available to mobile users. This comparative study helps us
validate our claim stating that in the domain of online information retrieval, an
intelligent assistant-like approach can be more e�ective than more conventional
tools.

7.1.1 Evaluation protocol

A limited population of 20 users has been asked to participate in our study. Each
user has been asked to perform a list of tasks with both Google MobileTMand
our prototype nicknamed Active Mobile. For practical reasons, the test duration
is limited to one hour and divided into four segments: introduction (2 minutes),
pre-evaluation questionnaire (5 minutes), tasks to perform with both systems
(twenty-�ve minutes each) and a post-evaluation questionnaire (2 minutes). All
test documents (questionnaires and response sheets) are provided in annex B.

• Introduction In this segment, an introduction to the experiment is given
to the subjects. First, we explain that the test is anonymous and only the
systems are being tested, not the users. The goal is to relieve any stress
or pressure users may feel.
Secondly, whereas many users will know how to use a Google-based search
engine, three points are provided to introduce them to the features of an
assistant-like system. First, we emphasize that in addition to keywords to
express their intent, full rich sentences can also be submitted. Secondly,
an assistant will try to anticipate user intentions and provide relevant
contextual suggestions. Finally, an assistant maintains a context as the
dialog unfolds, and is therefore aware of some details (such as the current
location or time) that do not need to be repeated.

• Pre-evaluation To establish a pro�le about subjects, a questionnaire col-
lects information about how experienced users are with traditional search
engines.

161

• Scenario A ten-task scenario related to the domain of travel is given to
users. They are asked to perform various tasks including fetching infor-
mation about a speci�c �ight's status, �nding a �ve-day weather forecast,
searching for hotels, restaurants, entertainment and services about a city
where they have to travel (see appendix for details). A response sheet
with blanks has to be �lled out within twenty-�ve minutes. Half of the
users were asked to start the quiz with Active Mobile, before performing
the same tasks with Google MobileTM. The other half was asked perform
the test in the opposite order.

• Post-evaluation Finally, a post-evaluation questionnaire is given to all
participants to gather information about how they evaluated the systems
and how the systems could be improved.

Figure 7.1: Screen shots of the Active Mobile and Google Mobile systems.

Users were asked to performed the required tasks using a cellular phone emu-
lator running on a desktop computer. The emulator (see �gure 7.1) is used to
provide realistic screen size and form factor conditions. In addition, the emula-
tor has been instrumented to time and log all requests and responses as users
perform the required tasks. Collected logs were used to extract the following
measurements:

• For each task:

� Time to completion. Duration, expressed in minutes, from the initial
query until the request information is retrieved.

� Number of user request. How many consecutive requests were neces-
sary to complete the task.

� Completion factor. The information to get can be fully or partially
retrieved. This measurement is expressed as a percentage (100% for
fully retrieved information)

162

• At the test level (for all tasks):

� Total time. Time, expressed in minutes, to complete the ten-task
scenario. If after twenty �ve minutes the scenario is not completed,
the test is aborted.

� Completion factor. The total completion factor.

� Total number of user requests.

7.1.2 Results

This section provides the results gathered from subjects. The results of our eval-
uation have been grouped into three categories: pre-evaluation questionnaire,
task results and post-evaluation questionnaire.

The pre-evaluation questionnaire shed an interesting light on our population.
If most of users (95%) use search engines very frequently, only 15% have used
them from their mobile phones. When asked why, users mentioned multiple
causes including Internet access fees (this may be speci�c to Switzerland), com-
munication latencies, and mostly frustration due to mobile user interfaces being
di�cult and slow to use. A very large number of users use Google (95%) from
their desktops as their primary search engine and a minority of them (20%) use
advanced search features such as operators, quotes, formats or sites constraints.

On the core test, subjects performed signi�cantly better with Active Mobile
than Google MobileTM. The main result of our evaluation consists of analyzing
logs generated by users attempting to perform our ten-task scenario. Within
the twenty-�ve minute period allocated to complete the tasks, Active Mobile
allowed users to complete 90% of the work, whereas Google MobileTMallowed
for the completion of 54% of the tasks. In addition, Active users needed an
average of 13.6 queries to solve the tasks, whereas Google users required an
average of 48.6 requests. On the time to completion, most Active users (90%)
completed all tasks within the time allocated for the test, whereas only 70% of
Google MobileTMusers managed to complete the test. The following discussion
elaborates more on the results and attempts to explain them.

The post evaluation questionnaire gave a clear preference to the intelligent
assistant approach over the more conventional keyword-based technique. A
large portion of subjects (95%) thought the Active-based system performed
better than its Google Mobile counter part.

7.1.3 Discussion

The results presented above show that, for a speci�c domain (travel related
queries issued by mobile users in our example), an intelligent assistant-like ap-
proach performs better than a generic keyword-based system. It is nevertheless
important to provide a more detailed comparative analysis.

Behaviors

As subjects were testing the system, we realized that user behaviors and search
techniques had a signi�cant impact on the performances of the keyword-based
system. However, most user behaviors led to similar performance with the
Active-based assistant.

163

First, let us describe the expert behavior. A small set of users used the Google
MobileTMsystem in a way that made it almost comparable to the Active-based
system in terms of task completion. They nevertheless required about three
times as much time and many more queries.
Instead of looking for the information itself, advanced users looked for speci�c
web sites or portals that would be best suited for the task to accomplish. For in-
stance, looking for an actual �ight status proved nearly impossible with Google
MobileTMusing a keyword-based approach based on airline name, �ight num-
ber or airports codes. However, some subjects (10% of the population) used
Google to navigate towards specialized sites. Instead of using keywords like
��ight united 501 status� they typed ��ight tracking�. Through this approach,
Google provided links to dedicated sites where speci�c �ight information could
be provided and the correct information fetched.
A second class of users has been categorized as verbose users. They tend to
pack as much information as possible into each query, to make sure the system
has enough information. They are trying to maximize their chances to get the
correct data while avoiding multiple back and forth utterances to save time and
avoid delays. Thanks to its robust parser, the intelligent assistant copes well
with long queries and gracefully ignores unnecessary words. On the other hand,
too many keywords confuse a Google-like system, which has very little semantic
knowledge about incoming tokens.
Finally, we noticed users with a consistent behavior. This group used the same
keyword-based approach for both a plain search engine and the intelligent as-
sistant.

Context

The ability of the assistant-like application to build a context over the dialog
was well received and used. It has been leveraged by 80% of users, who did not
repeat location information after getting the �rst set of data about the city to
visit.
It is interesting to note that search engines like Google MobileTMo�er an explicit
and limited context management. When starting a session, users are asked how
to search, either over the entire Internet or choose to look for localized businesses
and services. The vast majority of our population (90%) was not aware of this
option and chose to search over the entire Internet. The localized search screen
provides two input �elds, one for search keywords and a second to specify a
location (city name or zipcode). After submitting a request, for instance asking
for restaurants, the user is provided with a summary of what was understood
and a list of structured matches. In this mode, Google MobileTMbehaves like our
Active-based assistant, it returns aggregated and formatted information instead
of links to potentially relevant pages. Search constraints being purely based
on keywords without semantic understanding, additional information to get the
best, most popular or cheapest are either not taken into account or confusing to
the system. The bottom of the result page provides two input �elds for further
searches. Both �elds are pre-populated with the content of the previous request,
thus building a simple, explicit and useful context management.
Switching back and forth between the two search modes (broad Internet or
localized information) is not easy and prevents users from easily look for non
localized data (such as a �ight status) and local details (such a s hotel), without

164

starting a new session. The semantic capabilities of an Active-based assistant
approach hides this complexity from the user, who can express request about
local business or generic information without having to pick which search mode
to use.

Search follow up

We have also studied how users express follow up requests after an initial query
that did not return the expected information.
When using the search engine-based system, users modify the previous request
by adding, replacing or re-ordering keywords. According to the logs gathered,
adding is not a good technique, as it tends to confuse the search engine that
tries to match as many keywords as possible. Re-ordering of keywords had no
impact on the search results. Replacing keywords with new ones allowed users,
over �ne tuning, to get to the correct information.
On the case of the assistant-like system, users took advantage of the dialog
approach by adding one or two words to �ne tune their requests and get the
appropriate information. For instance in our test scenario, after getting �ight
information, users were asked to get the �ve-day weather forecast for the destina-
tion city, San Diego. A user typed �weather at destination�, which failed because
the test prototype does not use a data validation agent that could resolve des-
tination to San Diego. Instead, the system returned the weather forecast using
the current context, set to Palo Alto, California. Noticing it, the user simply
typed �San Diego� to get the correct information and adjust to dialog context
for further queries.

Utterance size

Both systems led to the same average of about four words per utterance.
First, let us discuss these results for Google MobileTM. A large scale research on
mobile and desktop Google users search habits[42] shows a average of 2.3 words
per query, which is smaller that what we observed. Since our test queries are
task oriented asking our subjects to accomplish something, they may be slightly
more expressive that if they are looking for online information.
On the Active Mobile side, this rather small number of words per utterance can
be explained by two factors. First, users were told that keywords as well as
natural language utterances could be used. Using a cellphone emulator for the
evaluation, subjects naturally tried to minimize typing and started using the
system as they would use any search engine. Note that other modalities, such
as a speech recognizer, may lead to longer and fuller utterances. As the dialog
unfolded, Active users became aware of context management and did not have
to repeat locations or attributes when looking for new pieces of information.
For instance, in our test scenario after looking for hotels in San Diego, users
where asked to �nd the best Indian restaurant in town. Since the context
already contains San Diego as the location, the three-word utterance �best indian
restaurant� is enough whereas �get me the best indian restaurant in town� would
have worked as well.

165

Information presentation

Information and rendering proved to be a crucial component to e�ectively get
the requested information.
Using Google MobileTM, links resulting from search queries lead to sites that
provide relevant information. However, many sites are not suited to mobile
devices, and the information cannot be easily found because it is hidden in a
cluttered and overloaded HTML page. In our test, when looking for �ight sta-
tus with Google MobileTM, several users ended up on a page that contained the
correct information but did not see it.
The assistant-like application provides aggregated and formatted information
instead of links to potential information sources. It is both an disadvantage and
an plus. The downside is that, in some cases, the system is not able to provide
information that is not part of its formatted view of the application domain.
This is the reason why, future versions of our system will provide, among the
clean and formatted information, direct links to the information source. For in-
stance, for each hotel information, in addition to hotel details and ranking, the
assistant should provide a link to hotel site, where users can navigate and try
(given that the site is compatible with a portable device) to get more detailed
information. On the other hand, there are many advantages in providing for-
matted information instead of raw links. First, multiple heterogeneous sources
can be aggregated and rendered in a consistent manner, thus hiding the com-
plexity of underlying data representation from the user. Items can be sorted
and �ltered more easily. For instance users looking for Italian restaurants only
get a subset of all possible restaurants. When looking for the best place to
eat, entries can be sorted by rating. In addition, subjects suggested that pro-
viding structured information cleanly laid out helps building trust between the
assistant and its users.

Application domain

In some cases, the broad generic search capabilities of the keyword-based ap-
proach is an advantage. An assistant-like application uses à priori knowledge
about a speci�c domain to deliver the best information. For instance, the appli-
cation domain and vocabulary are encoded into the assistant and are e�ectively
working as long as users ask questions related to the assistant's domain of ex-
pertise.
For instance, in our evaluation, our Active-based system would not have been
able to provide the recipe of a porcini risotto. A shallow, but massively broad
system like Google MobileTMhas the potential of providing such information to
the user. There is a trade o� between the quality of information and the domain
covered by an application. The results of the present evaluation show that a
broad system like Google MobileTMis outperformed by an intelligent assistant
specialized in a speci�c domain.

Most common errors

The Active-based application allowed for 90% of required tasks to be completed.
It is interesting to understand why 10% of the tasks could not be completed and
how the system could be improved to reduce this �gure. Through the analysis

166

of user logs, we identi�ed two main reasons that prevented the system from
delivering the requested information.

Vocabulary Most errors occurred because of missing vocabulary and mis-
spellings. For instance, hotel amenities and points of interests where expressed
with words that were not part of the vocabulary set initially de�ned. An im-
provement would consist of enhancing our semantic network approach with a
learning component. The application could have a special learning mode, where
users are asked to classify unknown words based on the current context and the
semantic network. Once the system has been trained, or the misunderstanding
rate is low enough, the learning mode could be turned o�.

Semantic validation Another source of errors comes from the assumption
from the user that the assistant is fully aware of the context. For instance,
after getting �ights details, a user typed �weather at destination�, which failed.
To resolve these types of errors, more semantic validation could be added for a
better leverage of the context.

7.1.4 Conclusion

This section presented a user evaluation of our prototype. A limited population
of twenty users was asked to perform a ten-task travel related scenario. Each
user evaluation lasted for one hour, with �fty minutes for the test itself and ten
minutes for explanation and �lling out of pre and post evaluation questionnaires.
The evaluation test consisted of performing the same tasks with both an Active-
based assistant (Active Mobile) and the leading commercial system designed to
help mobile users (Google MobileTM).

Active Mobile Google Mobile

Tasks completion 90% 54%

Nb requests 13.6 48.6

Nb words per request 4.1. 3.9

Time spent per task 1.3 minutes 4.33 minutes

Figure 7.2: User Evaluation Results Summary

Overall, the Active-based system performed signi�cantly better (see �gure
7.2). The assistant-like system provided a better completion rate (90% versus
54%), smaller number of requests to complete the ten-tasks (13.6 versus 48.6)
and faster task completion (1.3 minutes versus 4.33 minutes). Interestingly, both
techniques led to a similar number of about four words per request. Studies
have shown that the average number of keywords used for Google queries is
2.3. We explain this di�erence by the task-oriented nature of our test scenario,
which may have forced users to be more expressive. On the assistant side, users
leveraged the dialog-style interaction by providing a small number of words at
each utterance to adjust and �ne tune the dialog context.

When used by expert users, Google MobileTMleads to similar completion
rates as the Active-based system, but require more time, requests and man-

167

ual information extraction. The intelligent assistant has shown similar results
independently of users skills and expertise.

In conclusion, for speci�c task-oriented domains (travel in our case), an
assistant-like system can better help mobile users than keyword-based conven-
tional search engines. However, for unconstrained domain searches, a Google-
like system allows mobile users to retrieve virtually anything but requires a sig-
ni�cant e�ort in sorting, rating and extracting information from the returned
links.

7.2 Programmer Evaluation

This section presents the results of a programmer evaluation of the Active sys-
tem. In sections 6.3 and 7.1 on page 161 we have shown that, for speci�c
domains, assistant-like systems can perform better than conventional applica-
tions for end users. The present section validates our claim that using the Active
approach can greatly accelerate the training and development time required to
build AI-based, assistant-like applications.

In this evaluation, a population of programmers is given a simple two-step
test protocol. First, a tutorial (see appendix C) is used to train the subjects
on the Active system, more speci�cally about how Active can be used top cre-
ate a language processing application. Once the training phase is completed,
candidates are asked to create a language processing application able to pro-
cess a small corpus of ten utterances. Each created application is then tested
and evaluated against the ten-utterance corpus given as speci�cation, but also
against a one hundred-utterance corpus collected from real end-users usage of
an intelligent assistant application.

The chapter is organized as follows. First, each step of the evaluation pro-
tocol is presented in details. Then, a section presents the evaluation results. It
explains how Active programs are scored against the test utterances, presents
and discusses the actual results. Finally, a discussion and a conclusion summa-
rize our �ndings.

7.2.1 Test protocol

Each developer was given a three-step protocol consisting of a training session,
a building phase and a post-evaluation questionnaire.

Training tutorial

After getting a short presentation on the Active system, we asked participants
to go through a tutorial about how to create a language processing application
with Active. In a step-by-step process, the tutorial shows how to create, deploy
and test a language processing application based on the Active-based semantic
networks technique (see section 5.2.3 on page 71). The tutorial introduces the
most important features of the technique, starting from simple concepts, moving
towards more complex constructs. At the end of the tutorial, a simple language
processing application capable of parsing requests about classi�ed ads (cars and
homes) has been built and tested by the programmer.

168

System building

Once subjects have completed the training tutorial, the are considered as experts
and given the speci�cations of a language processing application to be built from
the ground up. The system to create is de�ned as a speci�cation corpus, shown
in �gure 7.3, whose utterance set has to be processed.

get me the weather forecast in San Diego

whats the weather in Seattle

�nd restaurants in menlo park

get me the best indian restaurant in Seattle

status �ight air france 83

is �ight united 510 on time?

united 1233

�nd thrillers in San Diego

get movies with John Wayne

hotels with a pool and wi�

I want a hotel in san diego with internet connectivity and a �tness

center

get me all starbucks in Paris

�nd �orists in San Diego

nearby ATMs in Palo Alto

Figure 7.3: Speci�cation corpus

Most features of the semantic network technique need to be used to e�ec-
tively create an application able to parse the speci�cation corpus. For leaf nodes,
some may be implemented using vocabulary set, for instance to enumerate ho-
tel amenities; some may use regular expressions, e.g. to detect �ight numbers;
�nally, a set of pre�xes may be used to detect cities in utterance such as �in
Paris� or �in Palo Alto�. To create an e�ective semantic network, programmers
will also need to use helper, gather and select nodes.

Questionnaire

At the end of the exercise, a questionnaire (see appendix D) is given to all partic-
ipants. First, it asks about their background and programming skills. The goal
is to establish a rough pro�le to assess whether being an accomplished program-
mer or whether being familiar with language processing techniques in�uences
the quality and nature of the generated Active programs. Secondly, subjects
are asked about their overall impression, comments and suggestions about the
Active system.

7.2.2 Evaluation

This section explains how the Active-based language processing applications
have been evaluated and scored.

169

Test corpora

Once complete, each application is tested against two corpora: the speci�cation
corpus and the end-user corpus.

First, the system is tested against the ten-utterance speci�cation corpus,
which was used by the evaluation subjects to create their applications. Since it
was the basic speci�cation of the test, the evaluation score against this corpus
is expected to be very high.

In order to have a realistic corpus to test against, we need another, more re-
alistic, set of utterances based on actual end-user interactions. Since the system
to be created by our subjects is very similar to the Active Mobile application,
we could create a substantial end-user corpus out of its end-user evaluation .
So that our end-user evaluation (see section 7.1 on page 161) will be used to
create the end-user corpus, that feeds our programmers evaluation.

Using the two corpora, we can evaluate the e�ectiveness of Active programs
created against their speci�cations, and also how they would perform against a
realistic set of utterances.

Scoring

After de�ning the two test corpora, we need the de�ne how to score and measure
the e�ectiveness of the language processing applications created by our subjects.
The e�ectiveness of the created parsing applications is measured by the amount
of relevant information extracted from user utterances. For each utterance of
the corpus, the language processing is scored. The overall score of the system
is de�ned as the average of each individual utterance score.

Basic For instance, the utterance ��nd movies in palo alto� contains two pieces
of information. A location (palo alto) and a subject (movies). A parser
able to pick both pieces of information gets the maximum score of 100
(one hundred percent of the information has been extracted), a parser the
only gets the subject and misses the location would get a score of 50. For
the sentence ��nd a hotel with a pool in Paris�, parser that misses the
amenity (pool), but is able to extract the location (Paris) and the subject
(hotel), get a score of 66.

Context The Active-based language processing technique naturally supports
context management (see section 5.2.3 on page 81). Therefore, to fully
evaluate our system, two separate scores are created for each utterance:
the instant score and the context score. Instance score only considers the
information contained in the current utterance, measures how much of it
was extracted by the parser to create the score. The context score, not
only takes into account the amount of information provided by the cur-
rent utterance, but also what is expected given the current context. For
instance, let us consider the following sequence: ��nd hotels in palo alto�,
followed by �on with a pool�. The �rst utterance provides a location and
a subject, whereas the second utterance contains a single piece of infor-
mation, an amenity. When computing the context score, we expect the
parser to provide three pieces of information after the second utterance
(location, subject and amenity type), whereas the instant score considers

170

that where is a single piece of information to extract for the second utter-
ance. A parser that successfully extracts the location and subject from the
�rst utterance, but misses the amenity speci�ed by the second utterance
would get a 0 instance score and a 66 context score.

Lists Finally, the scoring technique take errors and suggestions lists into ac-
count. The semantic network technique used in this evaluation has the
ability to provide errors and suggestions list along with the parsing re-
sults. If a parser misses a piece of information, but mentions in its error
list that it is missing, it gets half the penalty. For instance, if a parser
misses the location from the utterance ��nd movies in palo alto�, but spec-
i�es in its error list that the location is missing, it get a score of 75. If
the parser is used in an end-to-end application, the user would be noti�ed
that a location is missing and be able to correct the error by expressing
more accurate utterances.

7.2.3 Results

Population

We tested a small population of ten subjects. Most of them being software engi-
neers (70%), some very creative (see �gure 7.4), others more compact (see �gure
7.6). Although not programmers,the rest of our population are professionals ac-
tive in technology companies. Only 20% of our population had experience with
AI and were familiar with the concept of language processing.

Figure 7.4: Sample Active Onotology from the programmer evaluation.

171

Timing

All users completed the training part within 90 minutes; some (50%) completed
the training tutorial in less than 45 minutes. The second phase of the evaluation,
the creation of an language processing application, was also completed in about
on hour. Programming time ranges from 50 minutes for the fastest subject, to
1 hour and 20 minutes for the slowest. Most participants (70%) managed to
complete the second phase between 55 minutes and 1 hour and 10 minutes.

E�ectiveness

Using both speci�cation and end-user corpora, we evaluated the Active Ontolo-
gies created by the participants using both instant and context scores.

Participant Instant score Context score

1 86.9 88.6

2 98.2 98.2

3 98.3 98.2

4 91.1 91.1

5 98.2 98.2

6 91.1 91.1

7 94.6 95.8

Average 94.1 94.5

Figure 7.5: Scores on the speci�cation corpus

Table 7.5 reports scores related to the speci�cation corpus for each partici-
pants. The numbers show that, after one hour of self-training using a tutorial,
most users were able to create a language processing application that ful�lls
more than 94% of its requirements. We also notice that, since sentences of the
speci�cation corpus do not heavily rely on context, instant and context scores
are rather close.

Participant Instant score Context score

1 75.9 75.4

2 77.8 79.5

3 78.3 78.6

4 79.9 82.5

5 76.0 76.6

6 76.0 76.4

7 82.2 85.3

Average 78.0 79.2

Figure 7.7: Scores on the end-user corpus

172

Figure 7.6: Sample Active Onotology from the programmer evaluation.

Table 7.7 reports scores related to the end-user corpus for each participants.
The scores show that, our population of participants was able, in about two
hours, to get trained on both Active and on the concept of language process-
ing. Within this time, subjects successfully created an application capable of
extracting nearly 80 percent of the information carried by a corpus, consisting
of one hundred utterances, created from actual end-user queries.

These results help us demonstrate our goal that consists of using the Ac-
tive framework to lower the bar and ease the creation of intelligent assistant
applications.

Discussion

Our sample population is rather small � a larger number of subjects would
be useful to draw and validate our conclusions. However, some aspects of the
results presented in the previous section can be interpreted and discussed.

Uniform results

First, we note that user results, on both types of scores and corpora, are rather
uniform. It tends to demonstrate that being a software programmer may not
have a signi�cant impact on the e�ectiveness of the end application. This trend
can be explained by the nature of the language processing used by the evaluation
subjects. The semantic network technique focuses on abstract domain modeling,
where all processing is automatically added by Active Editor wizards. Therefore,
Active programmers need only to model the application domain, the structure
of the language, with no coding is required.

173

Active Editor

Undertaking this programmer evaluation showed that a powerful IDE is a crucial
component to our system. Many features of the Active Editor were put to the
test, showed their limitation, even requiring some improvement and work after
initial pre-evaluations from developers. Programmers are used to the power
and �exibility of platforms such as Eclipse or Visual Studio and are expecting
the same level of maturity from any programming tool. This exercise helped
us gather a list of improvements and suggestions. It also con�rmed our future
plans to port the entire Active Editor to run as a set of Eclipse extensions.

Common problems

While scoring the Active Ontologies created by our test population, we veri-
�ed for each utterance, why some part of the information carried by incoming
utterances were not properly extracted.

Most errors came from leaf nodes semantic rating techniques, not the overall
structure of the semantic network. All participants were able to model the upper
part of the network without any problems. On leaf nodes, the most common
errors can be summarized as follows.

Pre�x. The pre�xed technique, which consists of considering word following
a known pre�x to create semantic ratings, is simple and elegant to implement,
but poses problems in real world scenarios. In our study, all users but one
used the pre�x in to detect cities. This technique worked in most cases, but
many utterances of the end-user corpus simply use city names, without pre�x.
One user, subject #7, used an enumeration of all cities used in the speci�cation
corpus, thus getting better overall scores.

Vocabularies Another common problem consists of the technique used to
check vocabulary members. Our Active-based technique o�ers multiple ways
of testing utterance words with a vocabulary set. By default the technique
is the strictest, which is case sensitive, whereas other techniques can be cases
insensitive or even fuzzy using the Levenhstein distance (see paragraph 5.2.3 on
page 74). Most programmers left the default strict option, thus not detecting
relevant words. The same problem happens with plurals. For instance, to
detect comedies, participants would only enter the singular version of the word
as comedy. On the other hand, end-users would express a request as ��nd
comedies�, which would prevent our node from reacting properly.

7.2.4 Conclusion

This section presents the results of the programmers evaluation of the Active
system.

A small population of users has been been given a basic training on the
Active system and then asked to create, from scratch, and language processing
application. The training lasted for about one hour, and consisted of going over
all steps of a tutorial explaining how to create a language processing application
with Active. Once trained, subjects were given the speci�cations of an applica-
tion domain, as a small set of utterances to parse. It took participants about
one hour to create their applications.

The application were then evaluated and scored against two corpora. First,
the small corpus given as the speci�cation of the domain to test. Then, their

174

applications were tested against a larger, one hundred-utterance corpus made
out of real user utterances for the application domain. Results show that pro-
grams created were able to extract 94% of the information contained in the
speci�cation corpus, and nearly 80% of the real actual end-users corpus.

The results help us validate our claim, that a uni�ed tool and associated
methodology for creating intelligent assistant application eases the design and
implementation of such systems. It lowers the bar to create AI-based systems,
by allowing programmers to encapsulate and reuse techniques such as natural
language processing.

7.3 Performance Evaluation

We have shown so far that the Active framework allows for the design and
implementation of end-to-end user-centric systems. Even if the Active system
was designed as a research prototype, it is relevant to measure, analyze and
attempt to characterize its performance behavior. This analysis is useful for
two reasons. First, we will try to assess how Active-based applications would
scale up and therefore know the limitation and operating range of our existing
system. Secondly, we will pinpoint bottlenecks and isolate important features to
be taken into consideration when designing and Active-like system as product
able to scale up and manage large applications.

The section consists of the following parts. First, we provide basic metrics
that de�ne performance measurement of the core Active Server. Then, we an-
alyze how the Active-based language processing technique performs. Finally, a
conclusion summarizes the result and provides a set of technical recommenda-
tions to improve the overall system performance.

7.3.1 The Active Server

The Active Server is the processing core of the Active system. Its performance
behavior should ideally approach linear scalability, where the system response
time grows linearly as its workload augments. Linear scalability, also called
perfect scalability, ensures that a system provides a constant response time by
duplicating processing resources as its workload grows. In the industrial real-
world linear scalability is di�cult to reach; systems are designed not to scale
inde�nitely, but to reach near-linear scalability within their operating range.

The Active Server is built around a production rule engine, whose perfor-
mances mostly depend on how rules are processed. Rule processing can be seen
as a two-step process: rule condition evaluation and rule action execution. The
time required by an Active evaluation cycle will directly depends on how many
rules are to be evaluated, and among these, how many rules conditions will be
validated and lead to the actual execution of the rule action.

This section provides performance trends as well as absolute time measure-
ments. The machine used to characterize our system is a desktop computer,
equipped with an Intel Pentium D840 (3.2GHz) processor , 1GB RAM and run-
ning Windows XP (SP2). On the software side, all components where running
under Java 1.5 (build 1.5.0_05-b05) and the database system used is MySql
(ver 14.12).

175

Rule evaluation

There are multiple rule evaluation techniques, ranging from the most naive
that consists of fully evaluating all rules at each evaluation cycle, to the highly
e�cient Rete[19, 14] algorithm that keeps intermediate results in memory and
only performs partial evaluations for a new cycle. The Active Server implements
an intermediate solution, where rule conditions are partially evaluated based on
types and relations between the tests to perform against the fact store. The
Active Server implements four types of optimizations.

Fact store optimizations The �rst optimization set focuses on the Active
fact store. As introduced in section 4.2.7 on page 47, rule conditions consists
of boolean expressions that combine store-checks. Since store-checks work by
running a uni�cation against the content of the fact store, the overall perfor-
mance of the evaluation directly depends on two steps: the performance of the
read API exposed by the fact store and the number of uni�cations (expensive
operation) to perform.

A naive approach consists of running uni�cations with all facts, on the entire
content of the fact store. This technique would be too slow and limit the re-
sponse time of Active-based applications. To reduce the number of uni�cations
operations, the fact store uses an indexing mechanism. A read operation on the
fact store is a two-step process. First, using indexes a subset of the fact store
is retrieved. Then, a series of costly uni�cations are performed on this subset
only. If indexes are carefully chosen, the number of uni�cations to perform can
be substantially reduced. Note that if this technique signi�cantly improves read
operations, since indexes have to be generated on the �y, it has a small cost 1on
write operations. For each fact inserted into the fact store, indexes need to be
generated and index tables updated. The current implementation of the Active
store uses the following indexes:

• The Active Ontology name. Since the fact store is a central repository
for all deployed Active Ontologies, this index pre-sorts candidates on an
Ontology-basis.

• Fact signature. As facts are asserted into the facts store, a signature
made out of the name of the stored fact and the Active Ontology where
it belongs. The name of a fact depends on its type (see section 4.2.1
on page 41 for a de�nition of fact types). For simple facts, the name
is the a string representation of the fact itself. For complex facts, the
name is the identi�er of the top structure. For instance, the name of :
employee(name(john), lastname(doe), ssn(1234)) would be employee.

• Fact unique identi�er. Upon insertion, each fact is given a unique identi-
�er, that can be used as a key for fast access to a speci�c fact.

• Creation pass. Finally, each fact is tagged with the id of the evaluation
pass during which it was created. This allows for fast retrieval of events,
or facts that were asserted within the current pass. This set of facts is
queried for check-event tokens of rule conditions.

1 About 20 microseconds per write operation on our setup

176

To characterize the behavior of the Active Server, a series of measurements
where taken on the Active Server.

First, we created a simple Active Ontology with a single rule whose con-
dition is a single store-check. The condition of the test rule is of the form :
Store.checkEvent(test(simple))

To trigger the evaluation of the test rule, a test fact of the form test(simple)

is asserted. Over multiple tests, the test rule has been replicated to increase
the number of check-facts to be evaluated. Graph 7.8 shows that rule condition

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000

E
va

lu
at

io
n

tim
e

in
 m

s

Number of check-stores

Figure 7.8: Evaluation time vs Number of check-facts

evaluation time grows linearly as the number of rules expands. In addition to
the linear trend shown on the graph, it is also interesting to provide absolute
values. On our test machine, evaluating a simple rule whose condition has a
single check-fact takes about 45 microseconds. This value will be used to assess
how performances evolve as the rule conditions get more complex and the size
of the fact store grows.

To verify that our indexing technique behaves as expected, we pre-populated
the fact store with up to one million facts of the form value($V) where $V ranges
from 0 to one million. Using a check-fact of the form value($V) the Active Server
performed up to one million read accesses to the fact store. The clean store
chart on �gure 7.9 on the next page shows how the measuring time evolves in
a quasi linear way as the number of facts goes from 10 to one million. Next,
we added 10'000 parasite facts of the form value2($V) where $V ranges from 0 to
10'000. If the indexing technique works as designed, adding these facts should
have a minimal impact on our tests because facts of the form value2($V) should be
�ltered out by the indexing mechanism early in the read process. The full store
chart on �gure 7.9 on the following page shows that the indexing mechanism
allows for constant performances as more facts are added to the store. There
are nevertheless two interesting facts to mention. First, the impact of additional
parasite facts grows as the overall number of facts grows (1% for 100'000 fact
to 4% for 1 million facts). Secondly, as more facts are to be read, the response
time per check-fact grows linearly from 40 microseconds fro 10'000 facts to 55
microseconds for one million facts.

177

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200000 400000 600000 800000 1e+06

S
to

re
 r

ea
d

ac
ce

ss
 ti

m
e

in
 m

s

Number of facts to read

clean store
full store

Figure 7.9: Fact store read access

Condition guards The second optimization consists of leveraging guarded
conditions. As introduced in section 4.2.7 on page 47, rule conditions consists
of boolean expressions that combine store-checks. Store-checks are patterns
designed to query the fact store using uni�cation. Two types of store-checks can
be used when creating complex rule conditions: check-events and check-facts.
Check-events look only at the small set of new facts that actually triggered the
current evaluation cycle, whereas check-facts look to unify with all facts of the
store, regardless of when they were asserted. Since they query a reduced set
of facts, check-events evaluate more quickly than check-facts. When evaluating
rules, the Active Server isolates and evaluates check-events �rst. If a check event
is used to guard the rule condition, its negative evaluation aborts the rest of the
rule evaluation, thus signi�cantly optimizing the overall response time.

De�nition 11 Guarded rule condition
Store.checkEvent(GUARD_PATTERN) AND
(... Store.checkFact(F1_PATTERN) Store.checkFact(F2_PATTERN) ...)

De�nition 11 shows how such expression is constructed by using a check-
event that conjunctively, using an and operator, conditions the evaluation of
the rule condition. This optimization is e�ective because a very small set of
facts (typically less than 10) usually triggers an evaluation cycle, therefore it is
a good practice to use a guarded technique where ever possible to ensures better
response times.

This technique is used to create virtual memory spaces, designed to limit
the number of solutions when evaluating rule conditions. For instance, in the
semantic network language processing technique described in section 5.2.3 on
page 71, multiple users dialogs can be simultaneously managed and represented
as facts. Each user is assigned a unique session identi�er used as a component
of all the facts used to store her dialog. When processing events for a speci�c
user, the bound session identi�er is used to select and constrain the number
of matches during rule evaluations. Similarly, processes modeled with Active

178

(see section 5.4 on page 109) have a unique process instance identi�er, allowing
Active to e�ciently manage simultaneous process instances. Finally, the invo-
cation and delegation of services presented in section 5.3 on page 96 guards rule
conditions with unique invocation identi�ers.

Bound variables in compound expression. As a third optimization, con-
dition variables are used to further optimize the evaluation of complex rule con-
ditions. Before performing an evaluation, store-checks are ordered so that vari-
ables get bound early in the evaluation process to restrict and lower the number
of solutions. If an empty set of solutions is detected before the full evaluation
of a condition, the process aborts, thus saving processing time. To illustrate
this technique, let us consider a rule designed to join a person with its employee
data, where a person is represented by facts of the form person(�rstname, last-

name, employee_id) and additional information of the form employee(employee_id,

department, title).

De�nition 12 Variables binding

a) Store.checkFact(person($�rstname, $lastname, $PERSON_ID)) AND
Store.checkFact(employee($EMPLOYEE_ID, $department, title))
AND ($PERSON_ID == $EMPLOYEE_ID)
b) Store.checkFact(person($�rstname, $lastname, $ID)) AND
Store.checkFact(employee($ID, $department, title))

De�nition 12 shows two ways of expression the rule condition. First, a naive
approach, e�ectively performing a Cartesian product of all possibilities, followed
by a comparison. Assuming the company has n employees, the algorithm would
perform in the order O(n2). The second approach, leverages a bound variable
to restrict the solution space of the evaluation. In the example, as facts match-
ing person($�rstname, $lastname, $ID) are found, the value of $ID is bound and
immediately used to evaluate the second part of the expression employee($ID,

$department, title), hence constraining the number of solutions on the �y as the
evaluation process unfolds. Much more e�ective, this technique performs in lin-
early, in the order of O(n). Graph 7.10 shows measures taken on the Active
Server running an Active Ontology exposing rules using conditions shown on
de�nition 12. As the possible matches grows, the number of employees in our
example, the response time of the naive approach rapidly degrades, whereas
the variable binding technique shows much better response time and exhibits a
quasi-linear behavior.

Caching Finally, as a fourth optimization technique, the Active Server caches
and stores pre-compiled rule conditions. During the very �rst evaluation pass of
an Active Ontology, rule conditions are parsed and stored as in-memory struc-
tures later used for the actual evaluation. The evaluation rule is a two-step
process. First, all store-checks are validated and converted into boolean values.
For instance, the rule shown in de�nition 12 after store-checks are replaced with
boolean values, could lead to expressions such as:

true AND (false OR true)

true AND (true OR true)

179

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250

R
ul

e
ev

al
ua

tio
n

tim
e

in
 m

s

Number of values in each dimension

naive
compound

Figure 7.10: Evaluation time with and without variable binding

Once created, such expressions are passed to an interpreter for �nal evalua-
tion. Since these expressions do not have any variable parts, the result of the
evaluation can be cached. Therefore to speed-up the evaluation process, the
interpreter �rst looks into its cache to quickly respond to expressions it has
already evaluated.

Event if we elaborate more on full applications later in this chapter, it is
interesting to put these results in perspective with existing Active-based appli-
cations. Our largest application prototype is the information retrieval assistant
presented in section 6.2 on page 127. At each evaluation pass, the system evalu-
ates about 300 rules, requiring the evaluation of approximately 400 check-stores.
For a single user, the application creates about 700 facts in the store, adding a
100 more for each concurrent user.

Rule execution

Once the condition of a rule has been evaluated positively, the rule �res and
the associated action is executed. Rule actions are code snippets in charge
performing tasks, often using the values of bound variables, to be undertaken
by a rule.

When it comes to performances, the cost of executing a rule action consists
of two parts : the infrastructure cost and the action code execution cost.

The infrastructure cost is de�ned as all the preliminary processing, starting
after the positive evaluation of the rule, that prepares the execution of the code
snippet. To measure and qualify this cost, we have created a rule with an empty
code snippet and triggered it multiple times. The chart labeled do nothing on
�gure 7.11 represents the infrastructure cost as the number of executions of the
action grows. First, the chart grows linearly and as the number of executions
per evaluation cycle goes up, the cost per execution remains constant at 2.3 ms.

This processing time consists of three parts. First, the code snippet is au-
tomatically enhanced with system variables such as the name of the ontology
and all bound variables. Then, a pre-processing if applied to resolve references

180

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Number of runs

Do nothing
Write a fact

Figure 7.11: Action execution time

to packages de�ned in Active Server extensions. Finally, since the default pro-
gramming language o�ered by the Active platform is Javascript, most of the
time is consumed by the parsing and interpretation of the code snippet.

In addition to the infrastructure cost described above, executing actions in-
volves the cost of running the actions described by the programmer. This section
is out of the control of the Active platform, there are nevertheless guidelines and
best practices to follow when programming with Active.

• Avoid heavy synchronous processing. Active programmers should avoid
in�nite or long processing loops from happening synchronously with an
action code snippet. The current Active Server implementation allocates
one thread per Active Ontology, therefore if an action code enters an in�-
nite loop, it suspends the evaluation process of the entire Active Ontology.
Intensive processing loops can be performed, but asynchronously through
calls to external services using the Active invocation or delegation tech-
niques.

• Use built-in Active Server extensions. The Active Server supports an
extension mechanism where pre-packaged java-written libraries of function
can be registered and made available to Javascript code snippets. The
Active Server comes with built-in extensions to manipulate Active facts,
read and write to the fact store, use the invocation technique, call SOAP
compliant web services and perform basic logging.

• Create custom Active Server extensions. The Active Server provides an
SDKallowing programmers to write and register their own Active Server
extensions to encapsulate, register and expose Java-based function to be
called from Javascript as a rule action is executed.

Active Ontologies execution and management

Ontology execution management is a weak part of our existing implementation.
We use a simplistic algorithm that performs a sequential evaluation of Active

181

Ontologies. The engine cycles through the list of deployed Active Ontologies
to conditionally trigger their evaluation cycles. For each Active Ontology, the
server �rst checks if any relevant fact has been modi�ed since the last execution
before triggering an evaluation cycle. Note that testing if relevant facts for a
given Active Ontology have changed is very fast (a few microseconds). The fact
store keeps a �ag for each Active Ontology to signal any change as write, delete
or update operations take place on its API.

It would be a major improvement to redesign this part of the Active Server
to give one independent thread to each Active Ontology. I would allow our
system to be more responsive and, most of all, scale up nicely as the num-
ber of Active Ontologies to host becomes large. As the following sections will
show, this weakness has a limited impact on our Active-based applications. The
functional design of our prototypes implies a sequential execution anyways, as
results produced by �rst tier Active Ontologies (i.e. language processing) has
to be completed to sequentially trigger further processing through second tier
Active Ontologies (i.e. dialog modeled as a process). It is however a serious lim-
itation as multiple users connect to the system and many evaluations need to
be executed in parallel to serve di�erent sessions at various stages of processing.

Conclusion

This section presented a performance evaluation of the Active Server. First,
we looked at the basic processing elements involved in the evaluation cycle
of an Active Ontology: rule evaluation and rule execution. Then, a detailed
description of the implementation and optimizations of the server described the
overall performance behavior of our system. Finally, a series a measurement
were taken on the server to validate and verify that the implementation of the
server actually meets its design requirements.

The Active platform is a research prototype, designed as a �exible and simple
tool to experiment our new software technique. It is written in Java, implements
a production-rule paradigm and uses an interpreted language as its execution
arm. Therefore, even if it proved to be su�cient to run our prototypes, the sim-
ple design of the Active Server shows weaknesses and could be further optimized
for speed and scalability. Even if the Active Server shows near linear scalability
in its operational range, its absolute response time is rather slow. Figure 7.11
shows that our Server requires an average of 1.2 seconds to evaluate 500 simple
rules. If this response time is enough for simple user-driven systems, it will not
be su�cient for large number of rules that consist of complex conditions. Also,
the server has not been thoroughly tested outside of this limited application
domain, where linear scalability may not be veri�ed.

7.3.2 Active Language Processing

This section presents the performance analysis the semantic network language
parsing presented in section 5.2.3 on page 71. As the most processing intensive
part of an Active-based application, the performance analysis of this technique
is the subject of a dedicated section.

182

Reminder of the technique

Language processing with semantic networks is based on a tree-like structure
that de�nes the semantic domain of an application. As user utterances are
captured by the environment, they are tokenized into words and injected into
the semantic network from its bottom leaf nodes. Leaf nodes analyze incoming
words, rate them and report their results to their parent nodes. Parent nodes
analyze the messages coming from their children, to come up with their own
ratings to be reported up the tree. Through this bottom-up processing �ow, a
command percolates to the top of the structure. As processing unfolds, informa-
tion such as user suggestions and error messages are created to provide details
and rationales about the decisions made by various nodes along the parsing the
process.

Figure 7.12: Sample Semantic Domain in Active Editor

Measurements and tests reported in this section have been performed on the
semantic domain shown in �gure 7.12. The domain represents a simple applica-
tion able to parse queries to retrieve information about movies and restaurants.
Sample utterances would be: '�nd restaurants in palo alto tonight', 'get me only
italian ones', 'good, now �nd me nearby movies'. The domain features all pos-
sible leaf node types: actor uses a pre�x, genre has a local list of movie genres,
zipcode uses a regular expression and city is connected to a database containing
30'000 major cities in the US.

Many factors in�uence the performance and response time of the semantic-
network language processing approach. The following sections present the most
relevant ones.

183

Number of rules

As described in the Active Server evaluation section, the performance of an
Active-based application depends on the number of rules to be examined at each
evaluation pass. In the case of language processing applications, the number of
rules will directly depend on the number and types of nodes that make up
the semantic network. A semantic network consists of various node types (see
section 5.2.3 on page 74for details) :

• leaf nodes: at the front line of processing, they get tokens sensed by the
environment

• gather nodes: create and rate structures out of their children ratings

• select nodes: select the single best candidate among their children

• infrastructure nodes: two specialized nodes are in charge of providing
the parsing infrastructure. First, the context node, processes incoming
utterances by tokenizing them into words to be injected to the network.
It also manages user sessions. Secondly, the root node processes values
generated by the processing tree.

Node type # Checks # Rules # Rules/token Processing [ms]

Leaf (reg. exp.) 13 5 3 25
Leaf (local list/DB) 13 7 2 15

Gather 13 5 1 35
Select 12 5 1 35

Language Input 10 5 2 40
Result Processing 14 5 2 40

Figure 7.13: Performance analysis of processing node types

An analysis and a series of measurements are summarized in table 7.13.
First, to estimate the evaluation time required by nodes, we list how many
rules and check-stores are required for each node type. Next, to assess the
execution time, we indicate how many rules actually �re when a new token
is submitted to the system. Finally, we provide the total processing time
required by each node type during processing. Table 7.13 can be used as
a reference to estimate the processing time required by an Active-based
language processing application.

Vocabulary size

For leaf nodes that base their semantic ratings on vocabulary sets, two factors
are important to consider for good performances: vocabulary size and utterance
size.
First, when using a vocabulary set, the processing time depends of vocabulary
size. Initially, the words of a given vocabulary can be stored as facts into the
Active Server fact store. Secondly, the number of words to consider directly
impacts performances. For instance, let us consider the state leaf node, instru-
mented with a rule that checks incoming tokens with a list of states. To detect

184

two-word state names (i.e. rhode island, new mexico) as well as one-word state
names (i.e. colorado, california), the state node checks any single token and
consecutive pairs of tokens against its vocabulary.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

P
ar

si
ng

 ti
m

e
in

 m
s

Vocabulary Size

local (1 word)
local (2 words)
local (3 words)

Figure 7.14: Locally hosted vocabulary sets

Figure 7.14 illustrates how the parsing time evolves as these two parame-
ters change. First, let us consider simple one-word utterances. After a sharp
response time increase to reach a 1000-word vocabulary, performances degrade
linearly as the vocabulary size grows to 10'000 words. Then, for 2-word ut-
terances, the same behavior is measured. However, the response time increase
for larger vocabularies is much sharper. Finally, let us look at three-word ut-
terances. The degradation in response time is so dramatic, that considering
three-word groups would prevent us from using large vocabularies. Since we
intend to support rich user requests consisting of up to 10-word utterances, and
possible large vocabularies of hundred of thousand words, we need to �nd a way
of reaching better performances.

185

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2000 4000 6000 8000 10000

P
ar

si
ng

 ti
m

e
in

 m
s

Vocabulary Size

1-word utterance (DB)
2-word utterance (DB)
3-word utterance (DB)

Figure 7.15: Local hosted vocabulary sets

Therefore, for large vocabularies we developed a JDBC connector so that
words and synonyms can be stored in database servers. This technique o�oads
most of the processing from the Active Server to the database server through
SQL queries. Figure 7.15 shows how performance is dramatically improved
when vocabularies are stored in a database. For 1-word, 2-word and 3-word
utterances, the response time remains almost constant, respectively 80 ms, 110
ms and 250 ms, as the vocabulary grows from 10 to 100'000 words.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400

P
ar

si
ng

 ti
m

e
in

 m
s

Vocabulary Size

local (1 word)
DB (1 word)

local (2 words)
DB (2 words)

local (3 words)
DB (3 words)

Figure 7.16: Local vs DB hosted vocabulary sets

However, connecting to a database has a �xed cost, about 80 milliseconds,
whereas looking up words locally in the Active Server can be very fast for small
vocabularies. Figure 7.16 shows that using local vocabularies is faster if the
number of words is smaller than 1000. Above that, it is much more e�ective to
use a database system.

186

Tree depth

The parsing process being a bottom up operation, starting with leaf-node ratings
being reported and processed up the tree by selection and gathering nodes,
depends heavily on the depth of the semantic model of the application domain.
Processing of each level of the tree (see �gure 7.12) requires an Active Ontology
evaluation pass. During the �rst pass, leaf nodes get tokens, generate semantic
ratings and report them to their parents' nodes. At the second pass, parents
directly connected to the leaves process their children inputs to generate and
report ratings to the own parent, who will react at the next evaluation pass.
Therefore, the technique requires as many evaluation passes as there are level
in the semantic model of the domain. Evaluation passes being run every 100
ms, parsing a ten-level tree would take at least one second.

The current implementation of the Active Server provides solutions to limit
the impact of tree depth. As explained in section 4.2.10 on page 51, concepts
can be given an execution priority, where high priority concepts get executed
�rst in a given evaluation pass. In the context of our parsing technique, setting
these priorities based on the depth of concepts (nodes and leaves) tree ensures
that deeper nodes are evaluated and produce ratings �rst. This way, the parsing
tree generates results in one single evaluation pass.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

P
ar

si
ng

 ti
m

e
in

 m
s

Number of leaf nodes

5 word utterances

Figure 7.17: Parsing time vs number of leaf nodes

More generally, the number of leaf nodes will directly impact the response
time of our language parsing technique. Figure 7.17 shows that the response
time augments linearly with the number of leaf nodes. This is explained by the
underlying infrastructure of the Active Server that also shows linear response
time as the number of rules to process augments.

Number of events to process

Large utterances lead to longer processing time. The larger the utterance, the
more tokens will be injected to the system and the greater the parsing time
becomes. The processing load is di�erent whether the user expresses a query

187

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25

P
ar

si
ng

 ti
m

e
in

 m
s

Utterance size in words

Figure 7.18: Parsing time vs utterance size

such as ��nd me a good an italian restaurant tonight in palo alto, California� or
�italian restaurants palo alto�. Figure 7.18 shows how the Active-based language
processing time increases as utterances get longer. First, it is interesting to
notice that as the number of words grows, the response time of the parser
augments linearly. In our experiment, the number of words per utterance ranges
from 1 to 25, where a one word utterance requires about 200 milliseconds to
parse, a twenty-�ve-word utterance takes up 2.5 seconds for parsing.

These numbers show that the current implementation of our system ful�lls
our needs. First, our system being designed for user-centric applications and not
as a system for information extraction or classi�cation of large texts, user utter-
ances to process are expected to be short. Secondly, we need to de�ne what we
intend by 'short'. Literature shows that Google search queries currently average
to around 2.5 words per request [42], on both mobile and desktop situations.
However, the goal of intelligent assistants such as Active applications is to make
users more comfortable in delegating complex tasks through longer utterances.
This is the reason why we are testing our system with longer utterances, to
ensure a good experience as users get more expressive using longer utterance.
Section 6.2 on page 125provides more details on the size of user utterances
expressed when using our prototypes.

Reference resolution and disambiguation

Section 5.2.3 on page 86, has shown how Active includes semantic validation
of values as part of the parsing process. Asking third party providers for help
in the middle of the parsing process impacts the responsiveness of the system.
For clean design purposes, helpers are implemented as rules and concepts de-
ployed as part of a service management Active Ontology, invoked through the
invocation mechanism (see section 1.2 on page 12). Therefore, using reference
resolution and disambiguation suspends the execution of the language process-
ing until helpers have provided results. This requires at least two full evaluations
passes, and our evaluation policy being sequential, requires the engine to cycle

188

twice over all deployed Active Ontologies. As shown earlier, cycle through all
know Active Ontologies has a limited performance impact because ontologies
whose fact store have not been modi�ed are skipped. On our test setup, using
one or more helpers adds an overall cost of about 400 milliseconds the parsing
time.

To improve user experience, the �rst evaluation pass of the parsing tree
noti�es the user that it is waiting for helpers to provide additional information.
An immediate noti�cation message, such as �Thank you processing your request�,
keeps the user attention and provides helpful feedback.

Number of concurrent user sessions

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 2 4 6 8 10

P
ar

si
ng

 ti
m

e
in

 m
s

Number of concurrent user sessions

5 word utterances

Figure 7.19: Parsing time vs number of sessions

In this section we examine how the processing time varies as the number
of concurrent user sessions grows. The Active-based language processing tech-
nique holds a context on a user basis. It allows for follow-up questions and
simple dialogs where users do not have to specify the entire information at each
utterance. On the design side, this is implemented using a set of facts tagged
with a unique user session identi�er, so that a single instance of the language
processing Active Ontology can concurrently manage multiple user sessions.
Figure 7.19 shows that the response time of the system grows linearly as more
user sessions are created. This is a positive fact, ensuring that scalability can
be reached by replicating servers and dispatching sessions to di�erent machines
using a load balancing technique.

Best practice

There is series of Active usage best practices to optimize language parsing per-
formances. First, rule evaluation optimizations such as guarded conditions and
variables binding improve performances. Secondly, heavy processing should not
be encoded in local Javascript interpreted code snippets, but rather implemented
in Java and packaged as Active Server extensions.

189

Conclusion

This section presented a performance evaluation of the language processing tech-
nique based on semantic networks. We �rst characterized the performance of a
semantic network by measuring the impact of each type of node used to build
the application domain. This gives us a reference chart used to approximate
the response time of a language processing based on the number and types of
nodes.

We then analyzed how vocabulary sizes and the number of words to test
a�ect performances. If using a database shows good performances for large
vocabularies, it is nevertheless faster to used the Active fact store for application
requiring vocabularies smaller than one thousand words.

We then show how using rule priorities of execution limits the impact of
application domains with large depths. If not built-in and optimized, algorithms
used for reference resolution and disambiguation can have a signi�cant impact
on the response time of the system. The semantic network technique supports
multiple user session simultaneously, however, as the number of users grows,
performances are a�ected.

7.3.3 Discussion

This section presented the performance evaluation of two components of the Ac-
tive system. First, a performance evaluation of the Active server shows that its
current implementation is powerful enough to run all our prototypes. However,
the evaluation draws the reader's attention to bottle necks and design imple-
mentation to be taken into consideration when building a commercial product.
Secondly, as the most processing intensive Active method, the performance be-
havior of the language processing technique is analyzed and measured. Similarly,
even if the technique ful�lled both functional and performance requirements or
our prototypes, it shows weaknesses as the application scales.

Given the interest shown by the commercial world to our research, this
discussion summarizes our performance evaluation and leverages our experience
to list important features a commercial product inspired by the Active system
should provide.

Performance In addition to the existing optimizations implemented by the
Active system, well known optimized techniques[19], faster storage systems and
a more parallel application design need to be used. As a core processing element,
uni�cation algorithms and fact data representations need to be careful designed
and implemented.

Scalability In terms of scalability, multiple components need to be carefully
designed. First, as the amount of information grows, the fact store needs to
provide good performance for both reading and writing fact-based information.
On the deployment side, a cluster-based approach needs to be considered so
that workloads can be distributed over multiple instances of servers.

Security Since the information stored and managed by intelligent assistants
can be sensitive, a full AAA security policy needs to be part of the implemen-
tation.

190

Robustness To be trusted and be able to perform actual transactions, intel-
ligent assistants need to provide a high level of robustness. For instance, the
need to recover from catastrophic failures, support transactional processes and
provide �awless detection and processing of exceptional situations.

Programming and Administration tools The IDE used by programmers
to program and debug applications on an Active-like system should be based
on a robust platform, such as popular Eclipse or NetBeans frameworks. Ad-
ministrative tools, should be web-based and open to be integrated with well
established management consoles such as Tivoli or OpenView, using integration
standards such as SNMP traps.

7.4 Conclusion

This chapter presented evaluations about three aspects of the Active platform.
First, it described an end-user evaluation of the system. A population of

users were asked to perform a set of ten on-line tasks related to travel, including
getting a weather forecast, �nding information about hotels, restaurants, �ight
status and various points of interest. Subjects had to perform the test with both
an Active-based assistant program and Google MobileTM, the leading commer-
cially available product for mobile search. Our intelligent assistant application
performed better than its commercial counterpart. The assistant-like system
provided a better completion rate (90% versus 54%), required a smaller number
of requests to complete the ten-tasks (13.6 versus 48.6) and produced faster
average task completion (1.3 minutes versus 4.33 minutes). This validates our
claim, stating that in some cases, intelligent assistant applications better server
users than more conventional software systems.

Secondly, an evaluation of Active as a programming language was conducted.
A population of programmers, mostly unfamiliar with AI-based systems, trained
used the Active system and then were asked to create a language processing
application. Once trained, they were able to successfully create an application,
able to understand nearly 80% of a one hundred-utterance corpus created from
actual user utterances (from the �rst experiment that performed better than
Google). The whole process, from training to evaluation, took less that two
hours per participant. This results supports our claim, stating that a uni�ed
tool and associated technique eases the development of intelligent assistants and
their AI-based technologies..

Finally, a performance evaluation of the core Active Server and its language
processing technique is provided. The current implementation of the Active
Server has shown enough processing power to successfully run our evaluation
prototypes. It has nevertheless not been designed as a commercial product
capable of scaling up to large amount of data and high levels of transactions.
The evaluation pinpoints weaknesses and bottlenecks to provide suggestions
about implementing a production ready system inspired by out work.

191

Chapter 8

Conclusion

The work described in this document presents and evaluates an innovative ap-
proach to ease the development of AI-based intelligent assistant software. This
concluding chapter starts with a summary of our research domain and a de-
scription the claims that motivated our work. This is followed by a list of
achievements that helped us support and validate our claims. Finally, future
directions and potential use of our work in both academic and commercial �elds
are provided.

8.1 Contributions and results

Application context

Computer systems keep growing in complexity, processing power and web con-
nectivity. To better leverage this rich environment and to assist users, we believe
a new type of assistant-like software will emerge, that goes a step beyond con-
ventional click-and-do paradigm by allowing users to delegate through natural
interaction some of their activities. Although progress towards these goals has
been made in the last decade, recent research has shown that building intelligent
assistants is a di�cult and complex task that requires expertise in many AI and
engineering related �elds. We believe that in order to accelerate widespread
adoption of this type of software, a breakthrough is required that simpli�es and
acclerates intelligent agent development. In this context, we have developed
a new methodology and toolset based on the notion of Active Ontologies that
aids in the creation of end-to-end intelligent software integrating technologies
such as natural language understanding, dialog, process modeling, and service
orchestration.

Contributions

Our work consisted of validating two claims at the source of our research:

• Advantages of intelligent assistants. We have shown, through the im-
plementation of prototypes and comparative evaluations, that intelligent
assistants can be more e�ective in some domains than conventional sys-
tems.

192

• Uni�ed approach. We have also demonstrated that a coherent and uni�ed
approach can speed the design, implementation, testing and deployment
of intelligent assistant applications.

Achievements

To support and validate our claims, our work can be summarized through the
following achievements.

Active Ontologies and associated methods The �rst achievement has
been to devise the concept of Active Ontologies and associated techniques. Ac-
tive Ontologies unify several AI techniques, including ontologies, production
rule engines, agent technologies and neuroscience-inspired systems.

Based on this original approach, a set of programming techniques has been
designed. First, basic programming schemes such as message passing over com-
munication channels and asynchronous invocation have been drafted. Then,
a collection of high level methods to implement language processing, process
modeling and dynamic service selection and invocation have been elaborated.

Active framework implementation To validate the techniques described
in the previous paragraph, we created a suite of tools to program, test and
deploy Active Ontologies. The current implementation of Active software suite
consists of four components: the Active Editor, the Active Server, the Active
Console and the NL Test Tool. Additionally, a set of programmatic extensions
have been developed to support programmers develop AI systems.

The Active Editor is a design environment used by developers to model,
deploy and test Active Ontologies. Within the Active Editor, developers can
graphically create and relate concept nodes. Manually write code or select Wiz-
ards that automatically generate rule sets within a concept to perform complex
pre-packaged operations.

The Active Server is a runtime engine that hosts and executes one or more
Active Ontologies. It can either be run as a standalone application or deployed
on a J2EE compliant application server. The Active Server exposes SOAP and
RMI protocols to allow external sensors component to report their results by
remotely inserting information into fact stores, thus triggering the evaluation of
concept rules within the deployed Active Ontologies.

The Active Console permits observation and maintenance of a running Active
Server. The console can be used as a test tool by injecting events into an Active
Server to trigger processing and monitoring the results by inspecting the content
of the fact store. In addition, the Active Console o�ers tools to remotely manage
the set of Active Ontologies deployed on an Active Server.

The NL Test Tool allows a programmer to test and debug natural language
applications using an interactive approach as well as a batch-oriented regression
test system.

Finally, a collection of Active Extensions has been developed to help pro-
grammers build Active-based systems. The Active framework implementation
is a Java-based software suite designed to be extensible and open. For both
the Active Editor and Active Server, plug-in mechanisms enable researchers to

193

package AI functionality allowing developers to share, apply and combine con-
cepts quickly and easily. A growing set of Active extensions is available for
language parsing, multimodal fusion, dialog and context management, and web
services integration. In addition, utility extensions have been implemented to
allow Active programmers to use email capabilities (both sending and receiv-
ing), connect to the Instant Messenger network and leverage a simple REST
API to build web-based applications.

Application design Based on the implementation of the Active platform and
its associated methods, we elaborated a simple set of guidelines to design and
implement Active-based applications.

The overall application design consists of a collection of specialized Active
Ontologies (language processing, process logic and service orchestration) and a
community of loosely coupled services.

In addition to this overall architecture design, we devised a technique to
extract Active Ontologies out of initial application requirements. The respon-
siveness of the application is also taken into account to ensure users comfort
and acceptance of the system.

Prototypes To evaluate and validate our initial claims, concepts, tools and
techniques presented above, a set of three Active-based prototypes have been
implemented and evaluated.

Mobile user assistant An assistant designed to help mobile users with
online activities was designed and implemented. The idea is to provide mobile
users with an interaction mode based on natural dialog over multiple utterances
to access online data and services.

For instance, when looking for an a�ordable French restaurant in Miami,
instead of accessing the Internet on an embedded limited browser, users can
send messages in plain English, such as �Find me a�ordable French restaurants
in Miami�. The answer is a message providing the list of relevant restaurants. In
addition to retrieving information, the system is able to undertake transactions
on behalf of the user, such as making reservations. For instance, if �Chez Paul�
is in the list of returned restaurants, an actual booking can be expressed as:
�good, book me a table for two tonight at chez paul�. Further requests leverage
dialog context for follow up questions. For instance, once a speci�c restaurant
has been picked, looking for nearby �orists can be expressed with a follow up
query as: �get me nearby �orists�. The system covers multiple domains such
as restaurants, movies, hotels, points of interest (�orists, ATMs, �tness center,
etc...), real time �ights information and weather forecasts.

This prototype helps us achieve two goals. First, as the �rst Active-based
prototype, it validates our implementation and design approaches by ful�lling
all the requirements imposed its initial de�nition. Secondly, the prototype was
used to demonstrate that an intelligent assistant using a combination of natural
language and dialog, is more e�ective than a more conventional keyword based
approach to retrieve online information. The evaluation consisted of asking
a population of twenty test users to accomplish a series of tasks using both
our system and the leading commercial application designed for mobile users
(Google MobileTM). The results show that using an assistant-like system in a

194

speci�c domain can be more e�ective than a keyword-based search engine. In
our test, 90% of required tasks could be completed by subjects using the Active-
based system, whereas only 50% could be achieved with Google MobileTM . In
addition, the assistant-like system required 14 queries to complete all ten tasks,
whereas the search engine-based system needed 49 queries to complete the test.

Finally, our prototype received a positive feedback from the commercial
world. The backend of our system has been used as a fully functional demon-
strator to successfully fund and launch a company whose goal is to better help
users on the move. Also, a large database system vendor is evaluating how an
Active-based approach could help users query over large datasets using natural
language and dialog.

Operating room assistant The second prototype built on top of Active
provides help to surgeons in the operating room. The application is imple-
mented as a multimodal system allowing surgeons to manipulate pre-operative
data, visualize live images coming from an endoscope and control a robotic
arm. Surgeons and their sta� interact with the system by a combination of
hand gesture using a contact-less mouse and voice recognition.

This prototype helped us validate and improve our work along two axes.
First, as the second Active-powered application that ful�lls all its initial re-
quirements, it further validates our tools and techniques. This second prototype
bears multiple di�erences with our �rst application dealing with online services.
Both prototypes are deployed in very di�erent application domains, and yet are
built with the same tools and methods. It demonstrates the �exibility and ver-
satility of our approach. This speci�c prototype focused on multimodal fusion
and on incorporating real-world e�ectors.

The prototype was evaluated by a small population of surgeons to determine
if an assistant-like approach is suitable for the operating room. Surgeons agree
that the approach is relevant for two main reasons. First, it allows them keep
their attention and focus on the patient while interacting with computer-based
systems. Secondly, the assistant federates all computer systems in one single
intuitive and coherent interface that hides some of the complexity of the under-
lying system. Results also showed that a combination of gestures and simple
sounds emerges as a promising interaction mode between computers and sur-
geons. However, on the implementation side, two major constraints need to be
overcome for a clinical use. All system components have to be certi�ed to be
used in the operating room and vendors of surgical equipments need to agree
on integration standards.

Meeting organizer assistant The third prototype implemented consists
of an assistant designed to help organize meetings. The assistant interacts in
a natural way (plain English) with the meeting organizer and its attendees
through instant messages and email.

Similarly to the prototypes presented above, creating this application and
ensuring that is complies with all initial requirements allowed to further im-
prove and validate our platform and its associated techniques. This prototype
focused on implementing and assistant who can manage long-running transac-
tions, as opposed to the request-response interaction characteristic of our other
prototypes.

195

A second goal behind the system was to evaluate how the Active platform
could be used for rapid prototyping. The aim was to design, implement and
validate the application in less than a week. A simple, but fully functional,
version of the system was completed in three eight-hour work days.

Finally, this application domain being popular for intelligent assistant sys-
tems, our implementation has been compared with existing similar meeting
scheduler assistants. As a general tool for AI-based systems, Active produced
fully functional system that includes language processing, a simple scheduling
logic and uses a community of services to communicate, reason and act. Other
applications do not o�er the full spectrum of components, but are much more
advanced and e�ective on some specialized components, for instance schedul-
ing policies. The conclusion is that Active can be used to rapidly create an
end-to-end system that can be further improved in speci�c components. Our
approach isolates components as either specialized Active Ontologies or external
services, allowing programmers and researchers to gradually enhance the system
by swapping in new experimental components.

Evaluation In addition of evaluating each of the three prototypes for func-
tionality and user studies, the programming tools and the core components of
the Active system have also been evaluated.

First, a performance evaluation of the current implementation of the Ac-
tive Server shows its strength and weaknesses. The evaluation shows that most
components of the Active Server scale linearly as the required processing load
augments. Scalability problems could therefore be solved by replicating multiple
instances of the Active Server. The analysis also mentions processing optimiza-
tions and shows their positive impact on response time. Programming best
practices have also been introduced to leverage these optimizations. Finally,
evaluations show that the performance of the current Active Server implemen-
tation was su�cient to implement three research prototypes. However, the
performance analysis found weaknesses in terms of running multiple Active On-
tologies simultaneously, robustness to catastrophic failures and rule evaluation
techniques. Our implementation is therefore not suited as-is for large systems,
but is powerful enough for research and prototyping purposes.

The programming tools and methods developed for Active programmers have
also been evaluated. After an introduction to the Active platform and a short
training, a population of programmers was asked to create an Active-based
application. They were asked to create a language processing application able to
parse a reference corpus of a dozen utterances representing travel related queries.
In average, it took each participant about one hour to their applications, which
were able to extract 95% of the information contained in the reference corpus.
In addition, each application was tested against a realistic corpus, made out one
hundred travel-related utterances collected from actual end-users when running
the evaluation of our mobile user assistant. Results show that nearly 80% of the
information contained in the real end-user corpus was successfully parsed and
extracted by the applications created by the programmer evaluation subjects.
These results help us validate our claim, that a uni�ed tool and associated
methodology for creating intelligent assistant application eases the design and
implementation of such systems.

Finally, as the Active platform was developed, the software industry showed

196

interest in our research and evaluated the system. A leading cellular phone
provider has positively evaluated our assistant for mobile users. The positive
outcome started a knowledge transfer process, aimed at creating a commercial
version of an intelligent assistant whose overall design is inspired by our research.
In an other industry, a major player in the database business is also evaluating
our system. The goal is to provide access to large databases through natural
language and dialog.

Documentation As part of our work, a set of documents related to our re-
search has been written.

In an e�ort to expose and confront our ideas to the academic world, �ve
peer-reviewed publications have been submitted, accepted and presented at in-
ternational conferences[29, 27, 30, 28, 26]. As a separate publication, the concept
of Active Ontologies and associated techniques is the subject of a patent �led
in the United States. (see appendix A)

To introduce our work to potential developers, a one-hundred page Active
Developer's Guide has been written. The document provides an introduction
to Active, step-by-step tutorials for building language processing applications
and a description of the Active SDK. The Active SDK is a set of classes to be
used when writing extensions and plugins that encapsulate AI techniques or
processing libraries.

Finally, a web site exposes the Active philosophy and some of our achieve-
ments. (http://imtsg14.ep�.ch/active)

8.2 Future Work

The result of our project being an actual tool and associated techniques, it opens
the door to multiple exciting challenges multiple domains.

Research

On the research side, additional AI-based techniques can be encapsulated and
expressed through the Active prism.

BDI systems A �rst domain would be BDI-based techniques. Reactive plan-
ning has proved [85] to be an e�ective technique to model intelligent assistants.
Our existing process modeling method and its extensions would be a good base
to implement BDI planners.

Learning The Active system makes a limited use of learning techniques. Pro-
viding a learning modules, for instance a classi�er, could be used in many ap-
plications. For instance, when building a natural language processing Active
Ontology, learning could be used as another disambiguation technique.

Activity recognition We developed and tested the semantic networks tech-
nique in the domain of language processing to determine the meaning of incom-
ing utterances. In a broader view, semantic networks could model high level
activities to help intelligent spaces understand user intentions. Smart spaces
could then provide relevant help, monitor and even take over some tasks.

197

New application domains We identi�ed two �elds where the Active plat-
form could contribute as the software base for research systems. First, the �eld
of transient computing or intelligent spaces. Research in this domain consists
of instrumenting a space, typically a room, with multiple sensors. The space
becomes aware of the local activities to react and provide relevant contextual
help. Examples are intelligent meeting rooms able to automatically create meet-
ing notes and facilitate communications, or intelligent homes providing help to
their residents, especially for senior citizens.

Another domain where Active could contribute is robot-human interaction.
An Active Server could be installed on a mobile robot to manage all interactions
the robot may have with human users. In addition, Active can model interactive
user interfaces to delegate complex tasks to robots.

Software suite

If the Active tools are have been tested and proved e�ective when designing our
collection of prototypes, there are many areas where they can be improved and
further developed.

Active Editor The current Active Editor is a standalone Java-based appli-
cation that uses Swing for its user interface components and a specialized pack-
age for graph rendering and manipulation. Re-writing the Active Editor as an
Eclipse plugin would make it more robust, easy to use by leveraging many ex-
isting functionalities of the Eclipse platform and, most of all, popular and easy
to distribute. Once integrated into Eclipse, a community of programmers could
create a collection of specialized addons. For instance, some functionalities of
the Active Console (reading the content or installing triggers on the fact store)
could be used directly from the IDE, making the processes of testing Active
systems faster and easier.

Active Server If all three Active-powered prototypes implemented so far have
shown enough responsiveness, our performance analysis of the Active Server
showed weaknesses and suggests potential improvements. In particular, the fact
store should not be an in memory only store, but provide persistence to recover
from catastrophic failures. In addition, the production rule engine could be
re-engineered to implement highly optimized evaluation techniques for better
performance and scalability. Finally, our implementation does not include any
security features. Since personal intelligent assistant can hold and manage per-
sonal information, it is crucial to secure and control the access to the system
data and services.

198

Bibliography

[1] S. Abney. Partial parsing via �nite-state cascades, 1996.

[2] J. Anderson. Rules of the Mind. Lawrence Erlbaum Associates Inc, New
Jersey, July 1993. Gibts in Golm unter 'CP 4000 AND'.

[3] R. Bastide, D. Navarre, P. Palanque, A. Schyn, and P. Dragicevic. A model-
based approach for real-time embedded multimodal systems in military
aircrafts. In ICMI '04: Proceedings of the 6th international conference on
Multimodal interfaces, pages 243�250, New York, NY, USA, 2004. ACM
Press.

[4] P. Berry, K. Conley, M. Gervasio, B. Peintner, T. Uribe, and N. Yorke-
Smith. Deploying a personalized time management agent. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS-06) Industrial Track, Hakodate, Japan, may 2006.

[5] P. Berry, K. Myers, T. Uribe, and N. Yorke-Smith. Constraint solving expe-
rience with the calo project. In Proceedings of CP Workshop on Constraint
Solving under Change and Uncertainty, pages 4�8, Sitges, Spain, oct 2005.

[6] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3�10, 2002.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented software architecture: a system of patterns. John Wiley
& Sons, Inc., New York, NY, USA, 1996.

[8] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas. Jack intelligent
agents - components for intelligent agents in java, 1999.

[9] J. Cassell. Embodied conversational interface agents. Commun. ACM,
43(4):70�78, 2000.

[10] A. Cheyer and D. Martin. The open agent architecture. Journal of Au-
tonomous Agents and Multi-Agent Systems, 4(1):143�148, March 2001.
OAA.

[11] A. Cheyer, J. Park, and R. Giuli. Iris: Integrate. relate. infer. share. 1st
Workshop on The Semantic Desktop. 4th International Semantic Web Con-
ference, page 15, nov 2005.

[12] M. Cilia and A. Buchmann. An active functionality service for e-business
applications, 2002.

199

[13] F Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana. Unraveling the web services web: An introduction to soap, wsdl,
and uddi. IEEE Internet Computing, 6(2):86�93, 2002.

[14] R.B. Doorenbos. Production matching for large learning systems. PhD
thesis, Pittsburgh, PA, USA, 1995.

[15] G. Dorais and K. Nicewarner. Adjustably Autonomous Multi-agent Plan
Execution with an Internal Spacecraft Free-Flying Robot Prototype. In
Proceedings of ICAPS'03 Workshop on Plan Execution, Trento, Italy, June
2003.

[16] J. Earley. An e�cient context-free parsing algorithm. Commun. ACM,
13(2):94�102, 1970.

[17] G. Ferguson and J. Allen. TRIPS: An integrated intelligent problem-solving
assistant. In AAAI/IAAI, pages 567�572, 1998.

[18] D.M.R. Ferreira and J.J. Pinto Ferreira. Developing a reusable work�ow
engine. J. Syst. Archit., 50(6):309�324, 2004.

[19] C. Forgy. Rete: a fast algorithm for the many pattern/many object pattern
match problem. pages 324�341, 1990.

[20] Ernest Friedman-Hill. Jess in Action : Java Rule-Based Systems (In Action
series). Manning Publications, December 2002.

[21] D. Georgakopoulos, M.F. Hornick, and A.P. Sheth. An overview of work�ow
management: From process modeling to work�ow automation infrastruc-
ture. Distributed and Parallel Databases, 3(2):119�153, 1995.

[22] J. Giarratano and G. Riley. Expert Systems: Principles and Programming.
Brooks/Cole Publishing Co., Paci�c Grove, CA, USA, 1989.

[23] C. Graetzel, S. Grange, T. Fong, and C. Baur. A noncontact mouse for
surgeon-computer interaction, 2003.

[24] R. Grimm and B. Bershad. Future directions: System support for pervasive
applications, 2002.

[25] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, S. Gribble, T. An-
derson, B. Bershad, G. Borriello, and D. Wetherall. Programming for per-
vasive computing environments, 2001.

[26] D. Guzzoni, A. Cheyer, and C. Baur. Active : A uni�ed platform for
building intelligent web interaction assistants. In Web Intelligence, WI-
2006, pages pp.417�420, 2006.

[27] D. Guzzoni, A. Cheyer, and C. Baur. Active, a platform for building in-
telligent software. In Computational Intelligence, CI-2006, pages 121�125,
2006.

[28] D. Guzzoni, A. Cheyer, and C. Baur. Active, a platform for building intel-
ligent operating room. In Proceedings of Surgetica07, number 1, 2007.

200

[29] D. Guzzoni, A. Cheyer, and C. Baur. Active, a tool for building intel-
ligent user interfaces. In Proceedings of the 11th IASTED International
Conference on Arti�cial Intelligence and Soft Computing, number 1, 2007.

[30] D. Guzzoni, A. Cheyer, and C. Baur. Modeling Human-Agent Interaction
with Active Ontologies. In AAAI Spring Symposium, Interaction Chal-
lenges for Intelligent Assistants, volume 1, pages 52�59, 2007.

[31] J. Hammerton, M. Osborne, S. Armstrong, and W. Daelemans. Introduc-
tion to special issue on machine learning approaches to shallow parsing. J.
Mach. Learn. Res., 2:551�558, 2002.

[32] J Hawkins and D. George. Hierarchical temporal memory. concepts, theory,
and terminology. Technical report, Numenta Inc., Menlo Park, California,
March 27 2007.

[33] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen.
The gator tech smart house: A programmable pervasive space. Computer,
38(3):50�60, 2005.

[34] G. Herzog, H. Kirchmann, S. Merten, A. Ndiaye, and P. Poller. Multi-
platform testbed: An integration platform for multimodal dialog systems,
2003.

[35] B. Hodjat and M. Amamiya. Applying the adaptive agent oriented software
architecture to the parsing of context sensitive grammars, 2000.

[36] B. Hodjat and M. Amamiya. Introducing the adaptive agent oriented soft-
ware architecture and its application in natural language user interfaces. In
First international workshop, AOSE 2000 on Agent-oriented software en-
gineering, pages 285�306, Secaucus, NJ, USA, 2001. Springer-Verlag New
York, Inc.

[37] K. Höök. Steps to take before intelligent user interfaces become real. In-
teracting with Computers, 12(4):409�426, 2000.

[38] DiCesare C. Hoxmeier, J.A. System response time and user satisfaction:
an experimental study of browser-based applications. In Proceedings of the
Association of Information Systems Americas Conference, 2000.

[39] M. Huber. Jam: a bdi-theoretic mobile agent architecture. In AGENTS
'99: Proceedings of the third annual conference on Autonomous Agents,
pages 236�243, New York, NY, USA, 1999. ACM Press.

[40] G.W. Johnson and R. Jennings. LabVIEW Graphical Programming.
McGraw-Hill Professional, 2001.

[41] M. Kahn and C. Della Torre Cicalese. Coabs grid scalability experiments.
Autonomous Agents and Multi-Agent Systems, 7(1-2):171�178, 2003.

[42] M. Kamvar and S. Baluja. A large scale study of wireless search behavior:
Google mobile search. In CHI '06: Proceedings of the SIGCHI conference
on Human Factors in computing systems, pages 701�709, New York, NY,
USA, 2006. ACM Press.

201

[43] G. Kappel, S. Rausch-Schott, and W. Retschitzegger. A framework for
work�ow management systems based on objects, rules and roles. ACM
Comput. Surv., 32(1es):27, 2000.

[44] K. Konolige, K. Myers, E. Ruspini, and A. Sa�otti. The Saphira architec-
ture: A design for autonomy. Journal of experimental & theoretical arti�cial
intelligence: JETAI, 9(1):215�235, 1997.

[45] J. Laird, A. Newell, and P. Rosenbloom. Soar: an architecture for general
intelligence. Artif. Intell., 33(1):1�64, 1987.

[46] P. Langley, K. McKusick, J. Allen, W. Iba, and K. Thompson. A design
for the icarus architecture. SIGART Bull., 2(4):104�109, 1991.

[47] V.I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10:707�+, February 1966.

[48] Selker T. Lieberman, H. Agents for the user interface. 2002.

[49] P. Maes. Agents that reduce work and information overload. In Commu-
nications of the ACM, volume 38, 1995.

[50] G. Marti, V. Bettschart, J-S Billiard, and C. Baur. Hybrid method for both
calibration and registration of an endoscope with an active optical tracker.
In CARS, pages 159�164, 2004.

[51] D. McCarthy and U. Dayal. The architecture of an active database man-
agement system. In SIGMOD '89: Proceedings of the 1989 ACM SIGMOD
international conference on Management of data, pages 215�224, New York,
NY, USA, 1989. ACM Press.

[52] M. McTear. Intelligent interface technology: from theory to reality? In-
teracting with Computers, 12(4):323�336, 2000.

[53] S. Middleton. Interface agents: A review of the �eld. ArXiv Computer
Science e-prints, March 2002.

[54] N. Milanovic and M. Malek. Current solutions for web service composition.
IEEE Internet Computing, 8(6):51�59, 2004.

[55] M. Minsky. Society of Mind. Simon & Schuster, March 1988.

[56] T.M. Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski.
Experience with a learning personal assistant. Commun. ACM, 37(7):80�
91, 1994.

[57] P. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A personal assistant
agent for calendar management, 2004.

[58] D. Morley and K Myers. The spark agent framework. In Proc. of the
Third Int. Joint Conf. on Autonomous Agents and Multi Agent Systems
(AAMAS-04), pages 712�719, New York, NY, July 2004.

[59] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541�580, 1989.

202

[60] F.F-H. Nah. A study on tolerable waiting time: how long are web users
willing to wait? Behaviour and Information Technology, 23:153�163(11),
May-June 2004.

[61] A. Newell. Uni�ed theories of cognition. Harvard University Press, Cam-
bridge, MA, USA, 1990.

[62] J. Niekrasz, M. Purver, J. Dowding, and S. Peters. Ontology-based dis-
course understanding for a persistent meeting assistant, 2005.

[63] G. Papamarkos, A. Poulovassilis, and P. Wood. Event-condition-action rule
languages for the semantic web, 2003.

[64] A. Rao and M. George�. Modeling rational agents with a bdi-architecture.
pages 317�328, 1998.

[65] C. Rich and C. Sidner. Collagen: A collaboration manager for software
interface agents. User Modeling and User-Adapted Interaction, 8(3-4):315�
350, 1998.

[66] F. Rosenberg and S. Dustdar. Business Rule Integration in BPEL � A
Service-Oriented Approach. In Proceedings of the 7th International IEEE
Conference on E-Commerce Technology (CEC 2005), 2005.

[67] V. Roto and A. Oulasvirta. Need for non-visual feedback with long response
times in mobile hci. In WWW '05: Special interest tracks and posters of
the 14th international conference on World Wide Web, pages 775�781, New
York, NY, USA, 2005. ACM Press.

[68] L. Rudolph. Project oxygen: Pervasive, human-centric computing - an ini-
tial experience. In CAiSE '01: Proceedings of the 13th International Con-
ference on Advanced Information Systems Engineering, pages 1�12, Lon-
don, UK, 2001. Springer-Verlag.

[69] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cli�s, NJ, 2nd edition edition, 2003.

[70] D. Saha and A. Mukherjee. Pervasive computing: A paradigm for the 21st
century. Computer, 36(3):25�31, 2003.

[71] M. Satyanarayanan and et al. Pervasive computing: Vision and challenges,
2001.

[72] B. Shneiderman and P. Maes. Direct manipulation vs. interface agents.
interactions, 4(6):42�61, 1997.

[73] D. H. Stefanov, Z. Bien, andW.-C. Bang. The smart house for older persons
and persons with physical disabilities: Structure, technology arrangements,
and perspectives. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND
REHABILITATION ENGINEERING, 12(2):228�250, 2004.

[74] K. Sycara, M. Paolucci, M. Van Velsen, and J. Giampapa. The retsina mas
infrastructure. Autonomous Agents and Multi-Agent Systems, 7(1-2):29�48,
2003.

203

[75] A. Tafat, M. Courant, and B. Hirsbrunner. Implicit environment-based
coordination in pervasive computing. In SAC '05: Proceedings of the 2005
ACM symposium on Applied computing, pages 457�461, New York, NY,
USA, 2005. ACM Press.

[76] W.M.P. Van der Aalst. The Application of Petri Nets to Work�ow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21�66,
1998.

[77] W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Work�ow patterns. Distrib. Parallel Databases, 14(1):5�51, 2003.

[78] S. Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 14(2),
1997.

[79] W. Wahlster, N. Reithinger, and A. Blocher. Smartkom: multimodal com-
munication with a life-like character. In EUROSPEECH-2001, pages 1547�
1550, 2001.

[80] N. Ward and W. Tsukahara. A study in responsiveness in spoken dialog.
Int. J. Hum.-Comput. Stud., 59(5):603�630, 2003.

[81] J. Weizenbaum. Eliza, a computer program for the study of natural lan-
guage communication between man and machine. Commun. ACM, 9(1):36�
45, 1966.

[82] D. Wilkins and K. Myers. Asynchronous dynamic replanning in a multia-
gent planning architecture. In A. Tate, editor, Advanced Planning Technol-
ogy: Technological Achievements of the ARPA/Rome Laboratory Planning
Initiative, pages 267�274, AAAI Press, Menlo Park, CA, 1996.

[83] M. Willey. Design and implementation of a stroke interface library, 1997.

[84] M. Winiko�, L. Padgham, and J. Harland. Simplifying the development
of intelligent agents. In AI '01: Proceedings of the 14th Australian Joint
Conference on Arti�cial Intelligence, pages 557�568, London, UK, 2001.
Springer-Verlag.

[85] W. Wobcke, V. Ho, A. Nguyen, and A. Krzywicki. A bdi agent architecture
for dialogue modelling and coordination in a smart personal assistant. In
MMUI '05: Proceedings of the 2005 NICTA-HCSNet Multimodal User In-
teraction Workshop, pages 61�66, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc.

[86] J. Yang, W. Yang, M. Denecke, and A. Waibel. Smart sight: A tourist
assistant system. In ISWC '99: Proceedings of the 3rd IEEE International
Symposium on Wearable Computers, page 73, Washington, DC, USA, 1999.
IEEE Computer Society.

[87] J. Yue Chai, M. Budzikowska, V. Horvath, N. Nicolov, N. Kambhatla,
and W. Zadrozny. Natural language sales assistant - a web-based dialog
system for online sales. In Proceedings of the Thirteenth Conference on
Innovative Applications of Arti�cial Intelligence Conference, pages 19�26.
AAAI Press, 2001.

204

Glossary

AAA Security AAA is a framework providing three independent security func-
tions: authentication, authorization and accounting.

Active Extension Server-side pre-compiled functionalities that can be called
from Active rule code snippets.

AI Arti�cial Intelligence

API Application Programming Interface

POP Post O�ce Protocol. An application-layer Internet standard protocol,
to retrieve e-mail from a remote server.

SOA Service Oriented Architecture

Corpus Set of reference utterances used to validate linguistic rules

CT Computer Tomographic imaging. In medical imaging, technique to con-
struct 3D information out of 2D section images.

DARPA Defense Advanced Research Projects Agency

Dynamic programming Programming tehcnique designed to solve a problem by
caching subproblem solutions rather than recomputing them.

EBNF Extended Backus Naur Form. A notation to express context-free gram-
mars.

EBNF Extended Backus Naur Form. A syntax used to express formal gram-
mars.

EJB Enterprise Java Bean. Managed server side Java-based component.

GPS Global Positioning System

HCI Human Computer Interaction

HCI Human Computer Interaction

IDE Integrated Development Environment

JDBC JDBC is an API for the Java programming language that de�nes how
to access a database.

205

PDA Personal Digital Assistant, an electronic device which can include some
of the functionality of a computer, a cellphone, a music player and a
camera

RDBMS Relational Database Management System. Refers to a database man-
agement system that o�ers a reliable persistence machnism.

REST Representational State Transfer. Lightweight HTTP-based communica-
tion protocol. Requests are expressed through url attributes and results
as XML documents.

RPC Remote Procedure Call

SDK Software Developer Kit

SDK Software Development Kit

snippets Snippet is a programming term for a small region of re-usable source
code or text.

SOAP Simple Object Access Protocol

Utterance An utterance is one or more words, making complete unit in a given
spoken language.

Web Scraper Web scraping is the action of extracting content from a website

WSDL Web Service Description Language. Provies all necessary information
to invoke a SOAP compliant web service.

XML-RPC XML-RPC is a remote procedure call protocol which uses XML to
encode its calls and HTTP as a transport mechanism.

XSLT Extensible Stylesheet Language Transformations. An XML-based lan-
guage used for the transformation of XML documents into other XML-
documents.

206

Appendix A : United States

Patent Application

207

Appendix B : User Evaluation

Sheet

216

Subject ID: Date:

ACTIVE USER STUDY INSTRUCTIONS

1 Introduction
This user study evaluates and compares three tools that facilitate online access
to information and services for mobile users.

o Google Mobile – market leading mobile search tool
o ASK Mobile – mobile search tool with some “natural language”

capabilities
o ACTIVE Mobile – A mobile search assistant

You will be asked to perform a sequence of tasks, with several of the tools being
tested. For each tool, we will measure the time to completion, number of queries,
accuracy of results and overall user satisfaction.

We’d also like you to answer two brief questionnaires, one before the exercise
and one after.

This session is expected to take about 1 hour total.

2 ACTIVE Search Assistant
Typically, most search engines accept keyword inputs, such as “tom cruise”, and
they return links to web pages that contain those terms. Using the ACTIVE
search assistant, you can use keywords if you like, but the system can also
understand queries naturally expressed in English. For example, you could enter
“give me a list of all flights from San Francisco to Boston”, and ACTIVE will return
a specific answer to your question, rather than providing links to other web pages
that might contain the answer to your question. ACTIVE also maintains context,
so if you ask for restaurants in Boston, you can ask for nearby flower shops and
it will interpret this request as being relevant to Boston.

3 Scenario

The tasks you will be asked to do will take place within the context of the
following scenario:

“You get a call from your boss asking you to fly to <a city> for an important
customer meeting. A flight has been booked for you, but you still need to find a
hotel and gather information about the trip.”

Subject ID: Date:

Pre-evaluation questionnaire
1. How often do you use a search-engine?

Never 1 2 3 4 5 Very often Web

Mobile Never 1 2 3 4 5 Very often

Comments:

2. How would you rate the effectiveness of the search tools you use?

not effective 1 2 3 4 5 very effective Web

Mobile not effective 1 2 3 4 5 very effective

Comments:

3. What type of search-engine user are you?
In addition to keywords, advanced users use attributes such as site, format,
AND/OR operators, quotes, etc…

Naïve user 1 2 3 4 5 Advanced Web

 Mobile Naïve user 1 2 3 4 5 Advanced

Comments:

4. Which search tools do you use?

Web ___

Mobile ___

Subject ID: Date:

GOOGLE MOBILE TASKS (page 1)

Answer as many of these questions as you can in 25 minutes. You will likely not
finish in this time frame (that’s OK).

You will be traveling to San Diego on flight United 501. Please find the following
information about your flight:

1. Flight status (e.g. delayed, on time, in the air): _______________

2. Actual departure time: _______________

Worried about what to pack, you need to find out about weather conditions in
San Diego for the coming five days. Find the climate (e.g. sunny) and low
temperature for each day.

3. Today’s climate: _____________________ Low Temp: _________
 Tomorrow: _____________________ Low Temp: _________
 Next : _____________________ Low Temp: _________
 Next : _____________________ Low Temp: _________
 Next : _____________________ Low Temp: _________

Next, you need to find hotels. You like to exercise every morning so you’d like
one with a fitness center, and you want internet connectivity in your room. Find
two candidate hotels that meet both of these criteria

4. Hotel Name: __
 Hotel Address: __
 Room price: __

5. Hotel Name: ___
 Hotel Address: __
 Room price: __

Being an Indian food fan, you are interested in trying out the best indian
restaurant in town.

6. Indian Restaurant: ___
 Phone number: __
 Evidence that it’s good: ______________________________________

Subject ID: Date:

GOOGLE MOBILE TASKS (page 2)

You want to find a few things to do in the evenings while you’re there. You like to
laugh, so find:

7. Funniest comedy club: ____________________________________

8. Comedy movie to watch: __________________________________
 Theater where it’s playing: ___________________________________

You don’t have much money in your pocket so you decide to find the closest
ATM to where you are (downtown Menlo Park).

9. Name: ___________________________________
 Address: ___________________________________
 How far to downtown? ___________________________________

Finally, you know that your significant other is going to be unhappy with this
unexpected trip. You decide to grab some flowers on your way to the airport to
appease him or her.

10. Florist: ____________________________________
 Address: ___________________________________

Subject ID: Date:

 ACTIVE MOBILE TASKS (page 1)

Answer as many of these questions as you can in 25 minutes. You will likely not
finish in this time frame (that’s OK).

You are traveling to San Diego on United flight 501. Please find the following
information about your flight:

1. Flight status (e.g. delayed, on time, in the air): _______________

2. Actual departure time: _______________

Worried about what to pack, you need to find out about weather conditions in
San Diego for the coming five days. Find the climate (e.g. sunny) and low
temperature for each day.

3. Today’s climate: _____________________ Low Temp: _________
 Tomorrow: _____________________ Low Temp: _________
 Next : _____________________ Low Temp: _________
 Next : _____________________ Low Temp: _________
 Next : _____________________ Low Temp: _________

Next, you need to find hotels. You like to exercise every morning so you’d like
one with a fitness center, and you want internet connectivity in your room. Find
two candidate hotels that meet both of these criteria

4. Hotel Name: __
 Hotel Address: __
 Room price: __

5. Hotel Name: ___
 Hotel Address: __
 Room price: __

Being an Indian food fan, you are interested in trying out the best indian
restaurant in town.

6. Indian Restaurant: ___
 Phone number: __
 Evidence that it’s good: ______________________________________

Subject ID: Date:

ACTIVE MOBILE TASKS (page 2)

You want to find a few things to do in the evenings while you’re there. You like to
laugh, so find:

7. Funniest comedy club: ____________________________________

8. Comedy movie to watch: __________________________________
 Theater where it’s playing: ___________________________________

You don’t have much money in your pocket so you decide to find the closest
ATM to where you are (downtown Menlo Park).

9. Name: ___________________________________
 Address: ___________________________________
 How far to downtown? ___________________________________

Finally, you know that your significant other is going to be unhappy with this
unexpected trip. You decide to grab some flowers on your way to the airport to
appease him or her.

10. Florist: ____________________________________
 Address: ___________________________________

Subject ID: Date:

Post-evaluation questionnaire

1. Overall, how would you rate the GOOGLE-based mobile search tool?

very bad 1 2 3 4 5 very good

Comments:

2. Overall, how would you rate the ASK-based mobile search tool?

very bad 1 2 3 4 5 very good

Comments:

3. Overall, how would you rate the ACTIVE-based mobile search tool?

very bad 1 2 3 4 5 very good

Comments:

4. Do you have additional suggestions for how we might improve ACTIVE?

Thank you for completing the ACTIVE evaluation

Appendix C : Programmer

Evaluation Tutorial

224

NLClassifiedsTutorial
From VRAI Group

Contents
[hide]

• 1 Introduction
o 1.1 Install and run required Active Components

• 2 Create a new Active Ontology
o 2.1 Ontology creation
o 2.2 Insert basic language processing concepts

• 3 Start modeling the application domain
o 3.1 Create the car gather node
o 3.2 Create the model leaf node
o 3.3 Create the color leaf node
o 3.4 Create structural relationships
o 3.5 Create root processing relationship
o 3.6 Deploy the sample Active Ontology

• 4 How to test the system
o 4.1 Run the NL-SwingConsole
o 4.2 Monitor the parsing tree
o 4.3 Second utterance

• 5 Populate the car node
o 5.1 Create the mileage leaf nodes
o 5.2 Create the year leaf node
o 5.3 Create children relationships

• 6 Test the system
o 6.1 First utterance
o 6.2 Second utterance

• 7 Add a second competing branch to the parsing tree
o 7.1 Create the home gather node
o 7.2 Create the type node
o 7.3 Create the amenities node
o 7.4 Create the city node
o 7.5 Create children relationships
o 7.6 Specify child cardinality
o 7.7 Specify child contribution
o 7.8 Create the item chooser node
o 7.9 Update the parsing tree

• 8 Test the system
o 8.1 First utterance
o 8.2 Second utterance

o 8.3 Third utterance
o 8.4 Fourth utterance
o 8.5 Fifth utterance
o 8.6 Sixth utterance

• 9 Add auxiliary information
o 9.1 Create the helper leaf nodes
o 9.2 Update the parsing tree

• 10 Test the system
o 10.1 First utterance
o 10.2 Second utterance
o 10.3 Third utterance

[edit]

Introduction
This tutorial is a practical guide to show how to use the Active software suite to create a
language processing application. As an example, we create a simple system able to parse
utterances related to classifieds (cars and real estate). Starting from an empty Active
Ontology, each step of the tutorial introduces new concepts and how to use Active to
implement, deploy and test them.

[edit]

Install and run required Active Components

The first step is to get and run basic Active software components: Active Server and
Active Editor. This step is described here. To verify that both the Active Server and the
Active Editor are running, make sure the connection indicator located on the lower right
corner of the Active Editor window is green. In addition, the name of the Active Server
with which the connection is established is shown on the title bar of the Active Editor. If
the indicator is red, the trouble shooting section provides more information.

To help build language processing applications with Active, a set of basic system Active
Ontologies need to be deployed on your Active Server. To do so, please execute the
following steps:

• From the Active Editor, load and deploy the following Active Ontologies :
o ACTIVE_HOME/ontologies/tutorial/javascript/Delegation.xml
o ACTIVE_HOME/ontologies/tutorial/javascript/NLCompanion.xml

• Close both Active Ontologies tabs

[edit]

Create a new Active Ontology

In this step, we will create the Active Ontology in charge of language processing.

[edit]

Ontology creation

The following steps describe how to create our Active Ontology: (See Hello world!
tutorial for details)

• Create a new blank Active Ontology
• Name the ontology : Classifieds
• Save it under : classifieds.xml

[edit]

Insert basic language processing concepts

Figure 1

Before starting modeling our application, we need to insert the basic elements to allow
our Active Ontology to perform language processing. Two generic processing nodes need
to be inserted.

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Context

• Leave all fields untouched, click on Finish
• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language

Processing -> Insert NL Root
• Leave all fields untouched, click on Finish

Two nodes (or Concepts) have now appeared in the graphs area of the Active Editor:
ResultProcessing and LanguageInput. These two concepts provide processing rules to be
inserted to any Active Ontology aimed at providing language processing. (LanguageInput
provides basic rules to process incoming utterances and ResultProcessing contains the
logic to manage parsing results). At the end of this step, your Active Ontology should
look like figure 1. Concepts can be graphically arranged using drag-on-drop mouse
operations.

[edit]

Start modeling the application domain
In this step we create the first basic structure of our language processing application. To
model the domain of our application, we are going to graphically construct the structures
and relationships that map natural language utterances into structured commands to be
executed by the system. Our applications model is an upside-down tree-like structure
made out of connected nodes. Terminal nodes on the bottom of the structure are leaf
nodes, non terminal nodes are either gather or choose nodes. When utterances are
submitted to the system for processing, each word is injected to the tree-like structure
from its bottom terminal leaf nodes. When presented with a word, leaf nodes use some
logic (the value of the word, its position in the sentence, etc…) to produce and
communicate reports to their parent nodes. In the context of our tutorial, we are going to
parse utterances about cars and real estate. A leaf node representing a car model will react
to words such as "honda" or "ford", whereas a leaf node in charge of detecting the home
types would trigger with "single family home" or "apartment". Typically, leaf nodes are
connected to gather nodes, in charge of collecting reports coming from their children to
create an aggregated message to be reported to their own parents. Through this bottom-up
sequence, when the top of the tree is reached, a structured object mapping the natural
language request is created.

Let\’s illustrate these concepts through our example. Since we are going to express
queries about cars, we need to create a car object with two simple attributes: model and
color.

[edit]

Create the car gather node

First, we need to create the car parent node:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Node

• In the name field, enter car
• From the type combo box, choose gather
• Click Next, then click Finish

[edit]

Create the model leaf node

Figure 2

Next, we need to create a leaf node in charge of detecting car models. The leaf will use a
vocabulary list to create its reports. To add the leaf node to our ontology, execute the
following steps:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter model
• Click Next
• In the Values section, click Add. Enter accura in the popup dialog.
• To add a synonym, click the + button in the word editor section. Enter honda

accura in the popup dialog.
• Repeat the previous operation with any known user. (prius, impreza)
• Click Finish

[edit]

Create the color leaf node

We need to create a second leaf node in charge of detecting colors. Similarly to the
model leaf node, we will use the NL Leaf Active Editor wizard.

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter color
• Click Next
• In the Values section, click Add. Enter blue in the popup dialog.
• Repeat the previous operation with red, silver and green.
• Click Finish

Note : This simple example shows how to locally store (in the Active Server fact store)
the vocabulary attached to a leaf. Optionally, the vocabulary can be stored externally in a
database or a flat file. Click here to get instructions about external vocabulary definition.

[edit]

Create structural relationships

We now have to define the relationships among these nodes. The leaf node model is a
child of the structure defined by the car node. To connect model to car:

• Move your mouse to the center of the model node until the pointer becomes a
hand.

• Left-click and hold. As you move your mouse, a line starting from the car node
follows.

• While holding the button down, navigate over the car node until the pointer
becomes a hand. Release the button to create the relationship.

• An arrow pointing from the person node to the car node appears.
• Proceed similarly to connect color to car.

Relationships have attributes that can be configured from the Active Editor. We are
presently modeling a relation of type is member of between a child leaf node and the
parent structure where is belongs. To configure our relationship:

• Left-click on the arrow to select a specific relationship. The arrow gets
highlighted and the code pane area (bottom right) of the Active Editor indicates
the attributes of the relationship to edit.

• In the type combobox select is member of
• The arrow turns green and the code pane show the specific attributes of this type

of relationship.
• Proceed similarly to the relationship between color and car.

[edit]

Create root processing relationship

Figure 3

The last operation is to connect top node of our domain model (the car node) to the
specialized ResultProcessing node inserted at step 1. This will allow our application to
notify the user about the result of the processing. To do so, you need to connect the car
node to the ResultProcessing concept using an is a (yellow) relationship.

[edit]

Deploy the sample Active Ontology

To reflect changes to Active Ontologies to the Active Server the new modified version
needs to be re-deployed.

• To deploy an Active Ontology into the Active server, you need to click on the

deploy toolbar icon . This operation automatically re-generates the underlying
rules, saves the Active Ontology to the local file system and deploys the new
version to the Active Server. At the end of this step, your active ontology should
look like figure 3.

[edit]

How to test the system
This step describes how to test our system by creating input utterances, monitoring the
state of the parsing tree and analyze the final processing result.

[edit]

Run the NL-SwingConsole

Figure 4 : NL Swing console

The NL Swing console is a stand alone application used to create and send input
utterances to an Active Ontology in charge of language processing. Here are the steps
required to use it:

• Run the application : ACTIVE_HOME/release/bin/nl-swing-console.bat
• In the Action combobox, select parse

• In the Target combobox, select Classifieds (or the name you defined for your NL
Active Ontology)

• The input section of the NL Swing console (at bottom of the main window), is
where to type your utterance. For instance type find a prius followed by the
enter key.

If all goes well, the following events should happen (see figure 4):

• The session field (top right part of the console) should be filled with a large
number. This is the unique id of your session (dialogue) with the language
processing Active Ontology you just created. We will come back to the notion of
session later in the tutorial.

• The final result of the processing should have appeared in the main section of the
console.

The parsed result shown in the console is made out of three parts. The parsed structure
shown in the NL-SwingConsole shows:

RESULT
 PARSED
 car
 color(not_specified)
 model(prius)
 ERRORS([])
 SUGGESTIONS([color])

Under PARSED is the structured command produced by the Active Ontology. Under
ERRORS and SUGGESTIONS two lists provide additional information about the
parsing process. We will come back to these lists later in the tutorial. In our example, the
resulting structure reflects our query describing a car that is a prius model. Note that there
are no errors, and a suggestion informs that the color can optionally be specified.

[edit]

Monitor the parsing tree

Figure 5

From the Active Editor it is possible to monitor the current state of the parsing tree. To do
so execute the following steps:

• In the Active Editor, check the "Show visual debug information" of the debug
panel (top right section).

• From the combobox located just below, select "nl_debug"
• Click the "refresh" button

If all goes well, nodes should become highlighted with colors. (see figure 5) All the
nodes of the parse tree are colored based on the confidence of their reports. For high
scores, the node gets more and more green. For low scores, nodes get more red. In our
case, the model node is green because it claims "honda", and its parent node (car) is also
green because it reported positive report information from one of its children. On the
other end, the color node is red because it could not detect anything relevant for its rules.

[edit]

Second utterance

Figure 6

To follow up on what the suggestion list contains, we can now specify price information:

• From the NL-SwingConsole enter : red
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 car
 color(red)
 model(prius)
 ERRORS([])
 SUGGESTIONS([])

Now both slots model and color are filled and the suggestion list is empty.

[edit]

Populate the car node
In this section we will see how the car node can be augmented more children: mileage
and year.

[edit]

Create the mileage leaf nodes

Figure 7

Next, we need to create a leaf node in charge of detecting the mileage of the car. Unlike
potential colors, the mileage could be anything and cannot restricted to a finite
vocabulary set. The strategy used by the leaf to create ratings uses a suffix. When the
word miles is detected, the node assumes that preceding words represent the car mileage.
For instance, the utterance "100K miles" will trigger a report from the mileage leaf
stating that "100K" is a mileage. To add the mileage leaf node to our ontology, execute
the following steps:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter mileage
• In the Check neighbours section (bottom), check Enable
• Select Check after (suffix)
• In the text area enter miles
• Click Finish

Figure 7 shows how to create a suffix based policy.

[edit]

Create the year leaf node

Figure 8

The leaf node in charge to detecting the manufacture year of the car is a four-digit
number and cannot be expressed either by a simple vocabulary set nor a suffix-based
technique. To detect numbers, (or any structured string) we will use a regular expression.
For instance, our year leaf might define a word with value “long” and a Regular
Expression Pattern that detects four-digit numbers : \\d{4}. When recognized, the
Matching Expression is returned as the value for the parse expression, not the Word
Value. To add the year leaf node to our ontology, execute the following steps:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter year
• Click Next
• In the Values section, click Add. Enter fourdigit in the popup dialog.
• In the Vocabulary section, select Regular Expression Pattern.
• In the text field, enter \\d{4}.
• Click Finish

Figure 7 shows how to create a regular expression-based policy.

[edit]

Create children relationships

Similarly to previous leaf nodes, children need to be connected to their parent node. To
do so, create the following relationships:

• From mileage to car, add a relationship of type is member of
• From year to car, add a relationship of type is member of

[edit]

Test the system
This step show how our application reacts to a sequence of input utterances about cars.
(Details about interacting with our application can be found here)

[edit]

First utterance

Figure 9

To start, let’s create an utterance about a car:

• To start a new dialog, from the NL-SwingConsole, click on Reset Session
• Enter : find a 1997 red accura
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 car
 color(red)
 mileage(not_specified)
 model(accura)
 year(1997)
 ERRORS([])
 SUGGESTIONS([mileage])

The resulting structure reflects our query describing the car to look for.

[edit]

Second utterance

Figure 10

To follow the element of suggestion list, we could now specify price information:

• Enter : about a 100K miles
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 car
 color(red)
 mileage(100K)
 model(accura)
 year(1997)
 ERRORS([])
 SUGGESTIONS([])

Note how only the mileage contribution to the parsed structure has changed.

[edit]

Add a second competing branch to the parsing tree
In this step, we will add a new branch in charge of parsing requests about real estate and
see how it contributes to a more complex parsing tree. To model a domain about homes,
we will create a structure similar to our existing car node. To keep the tutorial simple, we
use a limited home definition of three parameters: a city, a list of amenities and a type.

[edit]

Create the home gather node

First, we need to create the home gather node:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Node

• In the name field, enter home
• From the type combo box, choose gather
• Click Next, then click Finish

[edit]

Create the type node

Next, we need to create a leaf node in charge of detecting the type of home, using a small
vocabulary set. To add the home leaf node to our ontology, execute the following steps:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter type
• Click Next
• In the Values section, click Add. Enter house in the popup dialog. Next, we will

add synonyms to the word house.
• To add a synonym, click the + button in the word editor section. Enter "single

family home" in the popup dialog.
• Repeat the previous operation with "apartment", "studio" and "townhouse".
• Click Finish

[edit]

Create the amenities node

Next, we create a leaf node in charge specifying amenities to look for. The list of
amenities to support for out examples are : harwood floor, garage, fireplace and pool. To
add the amenities leaf node to our ontology, execute the following steps:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter amenities
• Click Next
• In the Values section, click Add. Enter hardwoodfloor in the popup dialog.

Next, we will add synonyms to detect the option.
• To add a synonym, click the + button in the word editor section. Enter

"hardwood floor" in the popup dialog.
• Repeat the previous operation with "garage", "fireplace" and "pool".
• Click Finish

[edit]

Create the city node

A prefix-based leaf node to detect the city where to search for a home. For this tutorial,
we will focus on cities located in the south of the San Francisco bay area. To add the city
leaf node to our ontology, execute the following steps:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

• In the name field, enter city
• Click Next
• In the Values section, click Add. Enter palo alto in the popup dialog.
• Repeat the previous operation with "sunnyvale", "menlo park", "sunnyvale"

or any city you may be interested in.

the popup dialog.

• Click Finish

[edit]

Create children relationships

Similarly to the car structure, home related nodes need to be connected. To do so, create
the following relationships:

• From city to home, add a relationship of type is member of
• From type to home, add a relationship of type is member of
• From amenities to home, add a relationship of type is member of

[edit]

Specify child cardinality

So far, we have used leaf nodes that produce a single value. For instance, a car has a
unique color and a single make. Amenities are different, one may want to search for a
home that has a pool and a garage. The Active-based language processor supports this by
configuring is member of relations. To specify that we may want to create a list of
possible amenities, execute the following steps:

• Right click on the is member of that connects amenities to home.
• In the Code Relationship Editor (lower right corner of the Active Editor) uncheck

the Is Single option.

[edit]

Specify child contribution

Some child nodes may contribute relevant information to the structure created by the
parents to which they are connected without contributing to their overall confidence
weight during the selection ("chooser") process. For instance, the amenities node reacts to
words such as garage or pool bringing details about the hotel to describe. However, if
someone is looking for a swimming pool or a garage, it would be unfortunate to have the
hotel node chosen because some of its amenities happen to match other points of interest.
To prevent this situation, children can be configured not to contribute to their parent's
selection rating, while providing structural information. This feature is also useful when a
child leaf-node is shared by multiple parents. Since it will equally contribute to all its
parents, it can be configured not to influence their selection rating, leaving more
relevance to its siblings. To specify this option on amenities, execute the following steps:

• Right click on the is member of relation that connects amenities to home.
• In the Code Relationship Editor (lower right corner of the Active Editor) uncheck

the Contributes to weight option.

In summary, if a leaf strongly contributes to the selection of its parent, "Contributes to
weight" should be selected. If a leaf connects to more than one parent, or does not contain
words that strongly influence whether their parent is selected or not, "Contributes to
weight" should be unchecked.

[edit]

Create the item chooser node

Users are going to express requests to look for cars or homes. To choose among these
two possible items, reports coming from the car node will be compared with reports
coming out of the home node. This is performed by chooser nodes, whose task is to select
the best option by using their children reports and relationship types. To add the chooser
node, we create a new node named item, connected with its two children: the car and the
home nodes. To add the chooser node:

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Node

• In the name field, enter item
• From the type combo box, choose choose
• Click Next, then click Finish

[edit]

Update the parsing tree

Figure 11

The car node is not the root of our parsing tree anymore, it needs to be disconnected from
the top ResultProcessing node.

• Right-click over the is a relationship that connects the car node to the
ResultProcessing node.

• Select the delete option.
• The relationship should disappear.

Next, we need to use relationships to create our new parsing tree and connect its new root
to the top ResultProcessing node.

• From car to item, add a relationship of type is a
• From home to item, add a relationship of type is a
• From item to ResultProcessing, add a relationship of type is a

Finally, save and deploy your Active Ontology. At the end of this step, it should look like
figure 11.

[edit]

Test the system
This step show how our application reacts to a sequence of input utterances about cars
and homes. (Details about interacting with our application can be found here)

[edit]

First utterance

Figure 12

To start, let’s create an utterance about cars:

• To start a new dialog, from the NL-SwingConsole, click on Reset Session
• Enter : blue accura
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 item
 car
 color(blue)
 mileage(not_specified)
 model(accura)
 year(not_specified)
 ERRORS([])
 SUGGESTIONS([mileage,year])

The resulting structure reflects our query describing information about a blue accura.
Note that there are no errors, and a suggestion informs that the mileage and the year can
be specified. On the Active Editor side, a green path starting from the car node shows
which nodes have produced positive reports.

[edit]

Second utterance

Figure 13

To follow the element of suggestion list, we could now specify year when the car was
manufactured:

• Enter : 1999
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 item
 car
 color(blue)
 mileage(not_specified)
 model(accura)
 year(1999)
 ERRORS([])
 SUGGESTIONS([mileage])

Now slots color, model and year are filled and the suggestion list only mentions mileage.

[edit]

Third utterance

Figure 14

To see how the item chooser node works, let’s enter an utterance related to a home:

• Enter : single family home
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole is:

RESULT
 PARSED
 item
 home
 []
 city(not_specified)
 type('house')
 ERRORS([])
 SUGGESTIONS([city])

The parsed result now indicates a home-related activity, where the type slot is filled. The
item node did its job: Since the user mentioned a word related to real estate, the home
side of the parsing tree was given the advantage. To make a decision a chooser node
(item in our case) uses two factors. As explained before, is uses the confidence of the
reports coming out of its children. In addition, chooser nodes use the age of children
reports. Each report is time-stamped with the time of its creation. When a chooser node
has to select its best children, it lowers to score of incoming reports based on their
timestamps. Older reports are penalized more than recent ones. This technique favors the
side of the tree the users talked about most recently. In our case both children (car and
home) have produced positive reports, their confidence may be equal. Since the report
coming out of the home child is more recent than the one produced by the car child, home
wins.

[edit]

Fourth utterance

Figure 15

To show more of the aging process of competing nodes, let’s add one more utterance
related to the home side of our parsing tree:

• Enter : in palo alto
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole is now:

RESULT
 PARSED

 item
 home
 []
 city('palo alto')
 type('house')
 ERRORS([])
 SUGGESTIONS([])

[edit]

Fifth utterance

Image:New-s10a-new.gif Now, let us specify amenities:

• Enter : with a garage
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole is now:

RESULT
 PARSED
 item
 home
 [amenities(garage)]
 city('palo alto')
 type('house')
 ERRORS([])
 SUGGESTIONS([])

[edit]

Sixth utterance

To illustrate the the amenities node has a multiple cardinality, let us specify a second
amenity:

• Enter : and a pool
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole is now:

RESULT
 PARSED
 item
 home

[amenities(garage),amenities('pool')]
 city('palo alto')
 type('house')
 ERRORS([])
 SUGGESTIONS([])

Note that the whole process could have been expressed as a single utterance : find a
single family home in palo alto with a garage and a swimming pool

[edit]

Add auxiliary information
This step introduces the notion of leaf nodes providing auxiliary information. In some
cases, words expressed by users provide information about which part of the parsing tree
should be given more weight, without contributing to the data structure to be created. For
instance, an utterance containing the word "car" indicates the topic the user is talking
about, without providing any specific information such as the year nor the model name.
The word "car" should only bring more weight to the car node without being part of the
generated data structure produced by the node. To implement this behavior, any leaf can
be connected to a gather node using a provide auxiliary information relationship.
Children connected as provide auxiliary information will contribute to the overall
confidence and age index of their parent gather node in a similar way as their siblings
connect as is member of children. The only difference between the two type of children is
that provide auxiliary information leaf nodes will not be part of the structure created for
the report of the parent gather node. To illustrate this concept, let's add two new leaf
nodes to our sample ontology. They will be in charge of detecting the words "homes" and
"cars".

[edit]

Create the helper leaf nodes

Figure 16

First, let's create a leaf node in charge of detecting "cars".

• Right click anywhere on the Graphs pane. Select : Insert Wizard -> Language
Processing -> Insert NL Leaf

er cars in the popup dialog.
onym, click the + button in the word editor section. Enter car in the

" leaf node, we will use the NL Leaf Active Editor wizard
to create a leaf in charge of detecting the word "homes" or "home".

rd -> Language
Processing -> Insert NL Leaf

homes in the popup dialog.
onym, click the + button in the word editor section. Enter home in

• In the name field, enter car_helper
• Click Next
• In the Values section, click Add. Ent
• To add a syn

popup dialog.
• Click Finish

Similarly to the "home_helper

• Right click anywhere on the Graphs pane. Select : Insert Wiza

• In the name field, enter home_helper
• Click Next
• In the Values section, click Add. Enter
• To add a syn

the popup dialog.
• Click Finish

[edit]

Update the parsing tree

Figure 17

 nodes providing auxiliary information need to be connected to the parent.

information"
ary

oy your Active Ontology. At the end of this step, it should look like
figure 17.

The helper

• From car_helper to car, add a relationship of type "provides auxiliary

• From home_helper to home, add a relationship of type "provides auxili
information"

Finally, save and depl

[edit]

Test the system
plication reacts to a sequence of input utterances about cars

and appartments. (Details about interacting with our application can be found here
This step show how our ap

)

[edit]

First utterance

Figure 18

t’s create an utterance about homes:

gConsole, click on Reset Session
• Enter : find homes

:

 PARSED

(not_specified)
(not_specified)

bout a home appears in the result created by the parsing
tree, the home option has been picked.

To start, le

• To start a new dialog, from the NL-Swin

• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows

RESULT

 item
 home
 []
 city
 type
 ERRORS([])
 SUGGESTIONS([city,type])

Even if no specific information a

[edit]

Second utterance

Figure 19

• Enter : a car
• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 item
 car
 color(not_specified)
 mileage(not_specified)
 model(not_specified)
 year(not_specified)
 ERRORS([])

SUGGESTIONS([color,model,mileage,year])

Similarly, even if no specific car related information was provided, the car side of the tree
was picked because the car_helper node contributed to the overall rating of the car node.

[edit]

Third utterance

Figure 20

To swing back on the home side, let us provide rich utterance about real estate:

• Enter : find an apartment with a fireplace in sunnyvale

• Refresh the parsing tree status in the Active Editor

The parsed structure shown in the NL-SwingConsole shows:

RESULT
 PARSED
 item
 home
 [amenities(fireplace)]
 city(sunnyvale)
 type(apartment)
 ERRORS([])
 SUGGESTIONS([])

Back to main Active Wiki

Appendix D : Programmer

Evaluation Sheet

251

Subject ID: Date:

ACTIVE PROGRAMMER STUDY
INSTRUCTIONS

1 Introduction
This user study evaluates how programmers can, after a short training, model a
language processing application using the Active framework and its extensions.

2 Goal of the evaluation
As you have experienced when going through our tutorial, a language processing
application converts samples of human language (utterances) into more formal
representations that are easier for computer programs to manipulate.

In this evaluation, you will be asked to construct a simple application in charge of
parsing a set utterances. Utterances to support are related to the travel domain
and are expressed in the following section.

3 Utterances to support
3.1 About weather
The user can express queries to get a weather forecast in any given city.

• “get me the weather forecast in San Diego”
• “what’s the weather in Seattle”

3.2 About restaurants
The goal is to describe restaurants by their location and type of cuisine. A location is any
city name and types of cuisine could be “french”, “italian”, “chinese”, “japanese” or
“indian”.
Examples:

• “find restaurants in Paris”
• “get me the best indian restaurant in Seattle”

3.3 About flights
The goal is to inquire about the status of flights. Airlines and flight numbers can be
specified. Airlines can be expressed either by their full name (i.e Air France) or code (i.e.
AF). Possible airlines should include “Air France” (“AF”), ”Lufthansa” (“LH”), “United”
(“UA” or “United Airlines”).
Flight numbers can be any two-digit, three-digit or four-digit flight number can be
specified.
Examples:

• “status flight air france 83”
• “is flight united 510 on time?”

Subject ID: Date:

• “united 1233”

3.4 About movies
Users should also express utterances about movies, modeled by a genre (“comedies”,
“thrillers” or “action”), a location (city name) and a list of any actors.

• “find thrillers in San Diego”
• “get movies with John Wayne”

3.5 About hotels
Allow users to search for hotels in a city by one or more amenities:

• “hotels with a pool and wifi”
• “I want a hotel in san diego with internet connectivity and a fitness center”

3.6 Points of interest
Finally, users should express utterances about points of interest, simply defined by a
name (“florist”, “starbucks” or “dentist”) and a location (city information).

• “get me all starbucks in Paris”
• “find florists in San Diego”
• “nearby ATMs in Palo Alto”

Subject ID: Date:

4 Post evaluation questionnaire

4.1 What are your software programming skills ?

weak 1 2 3 4 5 strong

Comments:

4.2 Have you ever worked with/on a language processing
software?

□Yes □No

Comments:

4.3 How would you rate the effectiveness of the system for
creating language processing ?

not effective 1 2 3 4 5 very effective

Comments:

Subject ID: Date:

4.4 Overall, how would you rate the Active system in general?

very bad 1 2 3 4 5 very good

Comments:

4.5 Please suggest some improvements to the application

Thank you for completing the Active evaluation

Appendix E : Candidate CV

256

Didier Guzzoni Tel: 021 8062758
Address: 5 Chemin des Vergers, 1162 St-Prex, Switzerland Email : didier@gmail.com

Technical Skills
Industrial and academic experience in both Silicon Valley and Switzerland. J2EE specialist and
early adopter of web service technologies. Strong interest and experience in software design,
implementation, distributed architectures, web based applications, artificial intelligence and HCI.
Technical expertise: Java, J2EE, SOAP, WSDL, Web2 (AJAX/Javascript), C#, IIS, Corba, Swing,
OpenGL

Work Experience

October 2003 – Present
EPFL / Lausanne

EPFL, Research assistant & Ph.D candidate

Based on eight years of research and industry experience, entered a Ph.D program to focus on research
in applied computer science. The goal is to ease the development and improve the performance of
intelligent assistant software. The solution provides a unified approach for rapidly developing applications
incorporating natural language interpretation, dialog management, multimodal fusion, adaptable
presentation generation, reactive execution and dynamic brokering of web services.

May 2002 - April 2004
Cupertino/California

Confluent Software (Oracle since March 2005)
Senior Software Engineer

Confluent Software is a leading provider of web services management solutions. Worked as lead engineer
on core components of Confluent Software product line. As an early employee, made critical technical
decisions that led the company to successfully design, implement and deploy J2EE based enterprise
quality software to major financial and manufacturing firms. Confluent Software was acquired by Oracle in
October 2005.

June 2000 - May 2002
Palo Alto/California

VerticalNet Inc. / Advanced Products Group
Research Engineer

Significant contributor to the OSM® distributed software architecture for dynamic web services
orchestration. OSM® was the first commercially available service oriented (SOAP) platform for electronic
commerce applications.

March 98 - June 2000
Menlo Park/California

SRI International / Artificial Intelligence Center
Software Engineer

Major contributor to the OAA® (www.ai.sri.com/~oaa) distributed software architecture, utilized in more
than twenty research and industrial projects. Primary responsibilities consisted of maintaining and
improving core OAA components (mostly Java, C, C++ and Visual Basic libraries), supporting users, and
presenting the OAA® philosophy at international conferences.

August 96 - March 98
EPFL / Lausanne

EPFL, Research assistant

Involved in the VIRGY project (Virtual Surgery) aimed at developing a training system based on virtual
reality and force feedback for endoscopic surgery. In charge of the design and implementation (C++,
OpenGL) of a virtual reality application that is able to simulate human organs and surgery tools. This
project was span off as a successful startup company.

Education
1996 EPFL (Swiss Federal Institute of
Technology)

M.S. in Computer Science with highest marks

1991 Engineering School of Geneva B.S. with highest honors in Electronic Engineering,
specialization in computer science and telecommunications

	Introduction
	Motivation
	Problem statement
	Approach and original contribution
	Unified approach
	Active Ontologies
	Design of Active-based methods
	Application design

	Objectives
	Claims
	Evaluate the concept of Active Ontologies
	Design and implementation of the Active framework
	Design of Active-based methods
	Implementation of prototypes
	Evaluation of claims

	Summary of chapters

	Literature Review
	AI frameworks
	Agent architectures
	Intelligent assistants
	Toolkits
	Applications for a specific domain

	Conclusion

	Theory of Operation
	How intelligent assistants work
	Motivation and problem space
	Intelligent assistants characteristics
	Relevant theories and approaches
	Our intelligent assistant definition

	A unified integrated framework
	Motivation
	The Active framework

	Conclusion

	Active Kernel
	Active Ontologies
	Active processing
	Facts
	Unification
	Fact store
	Rule evaluation cycle
	Simple conditions
	Conditions with variables
	Compound rule conditions
	Cascade Processing
	Fact creation
	Evaluation cycle control

	The Active software suite
	Active Editor
	Active Server
	Active Console
	Language processing test console

	Conclusion

	Active Methodologies
	Basic methods
	Communication channels
	Invocation mechanism
	Conclusion

	Language Understanding
	Introduction
	Grammar-based parsing with Active
	Language processing with Active Semantic Networks
	Conclusion

	Service Management
	Introduction
	Active implementation
	Practical example
	Conclusion

	Process Management
	Introduction
	Active implementation
	Evaluation
	Conclusion

	Applications and Prototypes
	Active Application Design
	Introduction
	Application requirements
	Software design
	System evaluation
	Conclusion

	Online Activities Assistant
	Introduction
	Prototype goals
	Requirements definition
	Implementation
	System evaluation
	Conclusion

	The Intelligent Operating Room
	Introduction
	Prototype goals
	Requirements definition
	Implementation
	System evaluation
	Conclusion

	Scheduling Assistant
	Introduction
	Prototype goals
	Requirements definition
	Implementation
	System evaluation
	Conclusion

	System Evaluation
	User evaluation
	Evaluation protocol
	Results
	Discussion
	Conclusion

	Programmer Evaluation
	Test protocol
	Evaluation
	Results
	Conclusion

	Performance Evaluation
	The Active Server
	Active Language Processing
	Discussion

	Conclusion

	Conclusion
	Contributions and results
	Future Work

